Acta Numerica (1994), pp. 145-202

Aspects of the numerical analysis of
neural networks

S.W. Ellacott

Department of Mathematical Sciences
University of Brighton
Moulsecoomb, Brighton BN2 4GJ
England
E-mail: swe@uniz.bton.ac.uk

This article starts with a brief introduction to neural networks for those un-
familiar with the basic concepts, together with a very brief overview of mathe-
matical approaches to the subject. This is followed by a more detailed look at
three areas of research which are of particular interest to numerical analysts.

The first area is approximation theory. If K is a compact set in R", for
some n, then it is proved that a semilinear feedforward network with one
hidden layer can uniformly approximate any continuous function in C(K) to
any required accuracy. A discussion of known results and open questions on
the degree of approximation is included. We also consider the relevance of
radial basis functions to neural networks.

The second area considered is that of learning algorithms. A detailed
analysis of one popular algorithm (the delta rule) will be given, indicating why
one implementation leads to a stable numerical process, whereas an initially
attractive variant (essentially a form of steepest descent) does not. Similar
considerations apply to the backpropagation algorithm. The effect of filtering
and other preprocessing of the input data will also be discussed systematically.

Finally some applications of neural networks to numerical computation are
considered.

CONTENTS

1 An introduction to neural networks 146
2 Density and approximation by neural networks 150
3 Numerical analysis of learning algorithms 174
4 Some numerical applications of neural networks 191
5 Concluding remarks 199

References 200

146 S.W. ELLACOTT

1. An introduction to neural networks
1.1. A network to compute ‘XOR’

A neural network is a model of computation based loosely on the mammalian
brain. Rather than give a formal definition we illustrate by a simple example.
Figure 1 shows a network designed to compute the ‘exclusive-or’ (XOR)
function. Each input unit takes a single scalar input. In general these may
take any real value, but for this particular example the inputs are restricted
to the values 0 or 1. Thus the set of possible input vectors is

{(0,0)7, (0,1)7, (1,0)", (1,1)T}.

The network is required to compute the output ‘0’ if the two inputs are
the same or ‘1’ if they are different. It does this in the following way. The
vertices of the graph shown as circles are called units or neurons. The input
units shown with no inscribed numbers simply pass their inputs to their
output edges which in this context are called links or synapses. They are
multiplied by the weights shown on these links and summed at the input to
the next unit. Suppose for instance the input vector is (1,0)7. The input
to the unit inscribed ‘1.5" is thus 1 x 1 + 1 x 0 = 1. In this type of network,
the ‘1.5’ itself is a threshold value. Since the total input 1 < 1.5, the out-
put of the unit is 0. If the original input vector were (1,1)7, the input to
this unit would be 2 > 1.5, so this unit would output 1. The output of a
unit as a function of the given input is called the activation function of the
unit. With the original input vector (1, 0)T, we see that the input to the unit

+1 +1

Input Units

Fig. 1.

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 147

inscribed 5" is thus 1 x 1 =2 x 041 x 0 = 1. Since 1 > .5, the output
of the whole network is 1 as required. The reader might like to verify in a
similar manner that the network correctly computes the exclusive-or of the
other three possible input vectors.

In this case the network is being used as a pattern classifier: the input
patterns are separated into classes. For this example there are just two
classes according to whether the XOR of the inputs is 0 or 1. Thus a single
binary output is sufficient. In other cases we may require more than two
classes. This can be achieved by allowing the output to take more values
or, alternatively by using more than one output. Originally neural nets
were thought of as logical devices like conventional computers. Pattern
classification is thus the classical application. However, it is now becoming
clear that much of that phenomenon that we think of as intelligence is
not really binary in this way. A tennis player attempting to hit a ball is
required to produce a complex muscular response to equally complex visual,
tactile and kinesthetic input data. The problem is one of control theory at a
complicated mutlivariate level. The human nervous system and brain in this
context is best thought of as a nonlinear analogue controller with learning
capability. Control applications of neural nets constitute a major application
area (see e.g. Warwick et al., 1992; Werbos, 1992), as do pattern recognition
problems in speech and vision where it is difficult to get good models to
analyse conventionally (e.g. Linggard and Nightingale, 1992). The ability of
neural systems to ‘learn’ (see Section 3) means that they can produce usable
models on the basis of examples without the need of a formal axiomatic
analysis.

Humans can also recognize patterns and structure in data when the re-
quired output is not known. In statistical language, the problem then is
one of clustering rather than classification. This is rather more difficult
than simply learning known patterns, but it can also be tackled by neural
networks. The most popular network for this problem is that due to Koho-
nen (see, for example, Wasserman (1990) Ch. 4). We will not discuss the
Kohonen net here, but note that the mathematical problems are somewhat
similar to the networks we do consider.

There is a vast range of variations on these general ideas: the interested
reader should consult one of the many textbooks available on this subject.
For an introductory treatment, see Aleksander and Morton (1990), Simpson
(1990) or Wasserman (1989). A deeper work, although now a little dated,
is Rumelhart and McClelland (1986).

1.2. Perceptrons and multilayer perceptrons

In this article we shall concentrate on the simplest of all neural networks,
the perceptron, and an extension of this called the multilayer perceptron

148 S.W. ELLacoTT

X1

>
o]

Fig. 2.

or semilinear feedforward network. The density results of Section 2 refer
to the latter. It is the most popular of all neural network architectures,
probably because it is relatively easy to understand and use. (However,
many of the ideas are much more widely applicable and the formulation of
the backpropagation algorithm given in Section 3 is certainly much more
general than is required just for the multilayer perceptron.) We will look
briefly at some other architectures including the Hopfield net in Section 4.

Figure 2 shows a simple perceptron with a single output. The units are
interpreted as in Figure 1 with the input units having identity activation
function and the output unit having a simple threshold. Thus denoting
the input vector by x and the weight vector by w (both in IR*) it is easy
to see that the output y is 1 if w/x > ¢ and 0 if w/'x < ¢. So for a fixed
weight vector w and threshold ¢, the network divides R* into two half spaces
separated by a hyperplane. For obvious reasons, the perceptron is described
as a linear network. Considering the case n = 2, observe that the pairs of
inputs required to produce outputs 1 or 0 for the exclusive-or function are
at diagonally opposite corners of a square so they cannot be separated by
a perceptron. This simple observation delayed the development of neural
networks for many years until tools for handling nonlinear networks such as
Figure 1 became available.

In spite of this restriction, it is worth studying the perceptron as it con-
stitutes the simplest case of many other network architectures and can give
very useful insight into their behaviour. The multilayer perceptron shown in

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 149

Output 1 Output 2

Hidden C
units

input 1 Input 2

Fig. 3.

Figure 3 is the most obvious and straightforward generalization. It consists
simply of layers of perceptrons connected together in cascade. Observe that
the AND and OR logical functions can be separated linearly. If we wish to
classify sets of points into two sets, we can certainly do it with three percep-
trons in cascade: the first layer divides the plane into half-planes, the second
can AND these to produce polygons and the third can OR these polygons
to assign them to a required class. We can therefore construct any desired
partition of IR* into polygonal regions, and classify these regions. This pro-
cess is illustrated for the two-dimensional case in Figure 4. Originally it was
believed that this was the minimum number of layers needed to solve the
classification problem, but it is now known that, in principle, two percep-
trons in cascade (i.e. only one hidden layer) is sufficient. A proof of this will
be given in Section 2. However, it does seem plausible to suppose that nets
with two or more hidden layers might be more efficient. This question is
still open.

In Figure 3 we have shown just two neurons in each layer. In practice the
input layer must match the dimension of the input vectors and the output
layer provides the number of desired outputs (usually small). However, the
number of units in the hidden layers may be chosen by the designer. For
the present we may still regard the units as having thresholds although in
fact this is not usually the way they are implemented, as will be described
in Section 2.

150 S.W. ELLACOTT

1.8. Mathematical approaches to neural networks

The theory of conventional computing devices is mostly a matter of dis-
crete mathematics. Indeed, computation has inspired considerable advances
in this branch of mathematics (Taylor, 1993). However as we have already
seen, neural nets can be considered as analogue devices so the required math-
ematics is much more classical. The problems of classification and clustering
traditionally belong to the statisticians. The structure of the classification
space can be analysed using statistical decision theory (Amari, 1990). If
we attempt to understand the actual behaviour of biological neurons we are
in the realm of mathematical modelling. For example, some authors have
considered architectures involving coupled oscillators and/or chaos theory
(Jones, 1992). Neurons can be thought of as simple, statistically identical
‘particles’ linked by the synapses. Thus the large-scale behaviour of assem-
blies of neurons has much in common with the statistical physics of gasses
(Venkataraman and Athithan, 1991). Dynamic behaviour can be introduced
into networks in many different ways. Some network architectures are re-
cursive (consider the output of a multilayer perceptron being fed back in as
part of the input, or the Hopfield net introduced in Section 4 below). Others
are defined by or approximated by differential equations. In fact the whole
panoply of dynamical systems and control theory underlies the study or
neural networks in a manner too pervasive to be adequately surveyed here.
Differential topology has its adherents (Wang et al., 1992). Indeed the the-
ory of neural networks would appear to be almost as chaotic as their dynamic
behaviour. It seems certain many of the results must be duplicated in differ-
ent papers under different names and using different languages. There is a
real need for the subject to develop its own coherent structure, rather than
borrowing from a host of other mathematical disciplines. Notwithstanding
this remark, we will now proceed to investigate neural networks from the
viewpoint of numerical analysis!

2. Density and approximation by neural networks

A natural question arising from the ideas developed in Section 1 is to consider
what sets of points a given network can classify. We have already seen that
a multilayer perceptron can separate any finite sets of points in R*. Let us
describe this a little more carefully. Let A and B be two finite sets in IR*. In
Figure 4, A might consist of the points labelled o and B the points labelled
X. Suppose we wish the network to produce output 1 for points in A and 0
for points in B. Clearly it is possible to construct a finite set of polygons
P, --- P, such that

ACQ:=UP, and BNPj=¢ forj=1,...,k (2.1)

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 151

Fig. 4.

Each P; consists of a finite intersection of half spaces. It can thus be ob-
tained by a network computing the logical AND function which is linearly
separable. The union to include A can then be obtained by a network com-
puting the OR function: OR is also linearly separable. This approach is
natural and simple, but it is difficult to take it very far. Moreover it only
applies to discrete logical functions. We would like our networks to be able
to cope with continuous problems such as the control problems involved in
balancing a rocket or catching a ball. A different viewpoint proves more
fruitful.

As before, we regard our inputs as vectors in IR*. The output y of the
network is a vector in IR™ where usually m < n. (In many cases m = 1.)
The network thus computes a function g : IR* — IR™ which we regard as an
approximation to some other function f : IR* — IR™. The point classification
problem discussed above can be put into this context by choosing m = 1
and f to be the characteristic function of the set Q in (2.1) (i.e. f(z) =1
if z € Q and 0 otherwise). This viewpoint means that neural networks can
be discussed using methods derived from approximation theory. The point
sets A and B are conveniently regarded as interpolation or sample points
for approximation of the function f. (Sometimes networks are actually con-
structed this way: the radial basis function networks discussed in Section 2.3
are of this type (Broomhead and Lowe, 1988; Mason and Parks, 1992).) As
constructed here the function f is not continuous; however since the point
sets A and B are finite, it is clearly possible to overcome this with some
smoothing process.

The question of what a neural net can compute may thus be restated
in approximation theoretic terms. Specifically we wish to know if our set

152 S.W. ELLACcOTT

Fig. 5.

of possible functions g, corresponding to our particular class of network, is
dense in some suitable function space which includes our target function f.
This question is the subject of this section. In fact nearly all the results just
consider the case of a single output network m = 1, so we will also make
this simplification. Our functions are thus (scalar) real valued, so we drop
the vector bold type and just refer to them as g and f.

In view of the difficulty of dealing with nondifferentiable and discontin-
uous functions, it is usual to use a smooth activation function, instead of
a threshold, for the units. (The activation function was explained in sec-
tion 1.1. It is the function that relates the sum of the inputs to a given
unit to the output.) Note that the activation function o : R — R Various
restrictions need to be put on ¢ to make a practical network, but we will
introduce these as required.

The results to be discussed next refer to the case of an multilayer percep-
tron with a single hidden layer of k units. The form of the network is shown
in Figure 5. The weight vector relating the inputs to the jth hidden neuron
is denoted w;. Thus for a given input x, the input to this unit is WJTx. We
assume that each of the hidden units has identical activation function o, but
that a ‘threshold like’ shift of the argument by a real scalar c; is permitted.
So the output from the jth hidden unit is

O'(W]TX +¢j).

Functions of this form are called ridge functions. The name derives from the
fact that they are obviously constant on the hyperplane ijx = constant. In

two dimensions, this means that the contours of the function form straight

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 153

ridges. An immediate consequence of this observation is the fact that no
nontrivial continuous ridge function can be in L (IR?) if n > 1. To see this,
choose xg for which a(w}"xo + ¢;) # 0. Then integrate || over the infinite
strip |w;‘-rx — w]Tx0| < 8, where 6 is chosen sufficiently small that o does not
vanish in the region.

Now we denote the weight connecting the jth hidden unit to the output
by a;. The output function g of the network is therefore

k
g(x) = Z aja(w;‘-rx + ¢;). (2.2)

Activation functions o used in practice have the property of being monotonic
increasing, bounded and sigmoidal, which means that the limits at +oo
are 1 and O respectively. Except for the threshold function, they are also
continuous and smooth. The most popular choice is

o(z) = 1/(1 + exp(—x)). (2.3)

However, the density proofs do not use all these conditions. For the basic
results only continuity or uniform continuity is required, plus in some cases
the condition that ¢ be sigmoidal.

We are interested, then, in approximation by linear combinations of ridge
functions. The first papers to establish that one hidden layer is sufficient,
i.e. that functions of the form (2.2) are dense, were Cybenko (1989), Hornik
et al. (1989) and Funahashi (1989). However, simpler and sharper proofs
have since superseded this work. An excellent survey of this topic is already
available: Light (1992), to which the current author is considerably indebted.
Rather than merely repeat the contents of this survey, we will adopt a more
synthetic and comparative approach, taking aspects from the methods of the
various authors and considering also some work by Mhaskar which postdates
the Light survey. Another survey, which deals with some approximation
theory issues in neural nets in a more practical way, is Mason and Parks
(1992), but this contains little analytical detail. We will also concentrate
on the particular practical issues involved for neural networks, but we shall
attempt to explain and simplify some of the analytical details which tend
to be rather technical in this field. In Sections 2.1 and 2.2 we will give
two complete and quite different proofs of the fundamental density result,
together with some other interesting sidelights. In the rest of Section 2 we
discuss more briefly two other relevant aspects of the interaction of neural
computing and approximation theory, namely radial basis networks, and
networks using finite length arithmetic.

154 S.W. ELLACOTT

2.1. Direct approaches to density

Several proofs of the density result start by considering the one-dimensional
case and we will also adopt this strategy in this subsection. A direct con-
structive approximation operator has been devised for this case by Chen,
Chen and Liu (1991) (their result is most easily found in Light (1992).) It
is of the type known as a quast interpolant which means that it is based on
linear combinations of function values. (It does not actually interpolate of
course.) The operator is, in fact, similar to the well known Bernstein op-
erator for polynomial approximation. The basic idea is to approximate the
function f by piecewise constants: a fairly natural approach in a neural net
context where the activation functions are generally thought of as smoothed
thresholds. We start by recalling a basic measure of continuity. Let K be a
compact set in IR Recall that if f € C(K), the modulus of continuity of f
is defined as
w(f,6) = sup |f(z) - f(y)l.
z,yeK
le—y|<é

Since f is continuous, w is finite and tends monotonically to zero as 6 — 0.
The modulus of continuity encapsulates various ideas of smoothness of f
that might be introduced. For example, suppose that f is Lipschitz, i.e.
|f(z) — f(y)] < L|x — y| for some real number L and for all z,y € K. Then
we have immediately w(f,§) < L§. Similar estimates apply for a-Lipschitz
and for differentiable functions. The modulus of continuity gives a simple
estimate of how well f can be approximated by piecewise constants. For
simplicity (but without much loss of generality as we can always rescale)
we choose K to be the interval [0,1], and let n € N. We consider the step
function h,(x) which takes the value f(v/n) in the interval v/n < z =<
(v +1)/n. Obviously this gives ||f — hnlloo < w(f,1/n). (Actually we could
reduce the constant from 1 to % by evaluating at mid-points but this choice
simplifies the notation.) It is convenient to write

I
ha(z) = £(0) + D _{f(v/n) = f((v = 1)/n)} (2.4)
v=1

where p is the largest integer which does not exceed nzx.

Now consider a continuous sigmoidal function such as (2.3). If we replace
z by ax for some a > 1, we steepen ¢ in the transitional region around
z = 0. In fact as a — o0, o(ax) — 0 or 1, according as x < 0 or z > 0.
In other words o converges pointwise to a simple threshold function with
the value ¢(0) at 0. Thus o(azx) — o(a(x — 1)) will approach the unit step
function which takes the value 1 on (0,1) and 0 elsewhere. In view of the
discontinuities at 0 and 1, this convergence cannot be uniform. But Chen
et al. (1991) noticed that if one combines the constructions of this and the

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 155

previous paragraph to approximate f, one does get uniform approximation,
since the size of the discontinuity approaches 0 as n — oo. More specifically,
suppose o is continuous (on IR) and sigmoidal. They define A, to be the
smallest positive integer such that

lo(z)] <nlforz < —A, and (1-n"1)<o(x)<A+n71)forz > A,.

Then they define the quasi interpolant g, as
gn(z) = F(0) + Y _{f(v/n) = f((v — 1)/n)}o(An(nz ~ v)) (2.5)
v=1

for z € [0,1]. Observe that this is precisely the approximation obtained by
the construction described above: for those values of v in the summation
with z < v, 6(A,(nz — v)) is approximately zero. A careful estimate yields
the following theorem.

Theorem 2.1 There exists a constant ¢ such that for f € C[0, 1],
If = gnlloo < cw(f,1/n).

(Here the uniform norm is taken on the interval [0,1].) Note that c is inde-
pendent of f and in fact we may choose ¢ = 4+ 25 where S = sup |o(z)| for
z € R i.e. the norm of o taken on the whole of R

Proof. We have ||f —galloo = [|[f —hn+hn+gnllcc < IIf —Pnlloo+hn—gnllco-
We already know [[f — hnllec < w(f,1/n) so only the second term need be
considered. Now for any z € [0,1] with u defined as in (2.5) we have

n
ha(z) = gn(z) = f(0)+ D _{f(v/n) = f((v = 1)/n}{1 - o(An(nz — v))}
v=1

+ X {fw/n) ~ f((v = 1)/n)}o(An(nz = v)).
v=p+l
Now v < p— 1 implies nzx — v > 1 s0 |1 — 0(4,(An — v))| < 1/n by the
definition of A,. Similarly v > p + 2 implies |o(An(nz — v))| < 1/n. Thus

[hn(z) = gn(@)] < w(f,1/n) + [{f(n/n) = f((n - 1)/n}
Hf((n+1)/n)}o(An(nz — p - 1))|.
)

The second term on the right-hand side is bounded by 2(1 + S)w(f,1/n),
which completes the proof. O

We remark in passing that if o is monotonic then S = 1 and ¢ in Theo-
rem 2.1 may be chosen as 6.

Now we need to pass to the n-dimensional case. There are two well known
methods of passing from one-dimensional to higher-dimensional approxima-
tions: the blending operator and the tensor product. The former method

156 S.W. ELLACOTT

has not to this author’s knowledge, been applied to neural nets at all: the
‘infinite interpolation’ properties of blending operators seem likely to cause
severe problems. However, the tensor product approach offers more hope.
To illustrate both the idea and the problems we will consider briefly
the two-dimensional case. Suppose we have two sets of basis functions
{¢1,..., 0.} and {¢1,...,9¥n} where ¢;,¢; : R — R The tensor product

basis is the set of u x v functions

G2, y) = gi(x)Y;(y)-

Sometimes one can construct a two-dimensional approximation using the
tensor product basis by applying a one-dimensional approximation operator
in each dimension: for example two-dimensional orthogonal expansions can
be constructed in this way. In practice the two sets are usually the same type
of function (e.g. both polynomials or both trigonometric functions) although
¢ and v may of course be different. Now let us consider what happens if we
apply this construction to ridge functions. For simplicity we assume that
the same function o is to be used for x and y. So typical one-dimensional
ridge functions will be o(a;x +¢;) and o(b;y +d;). The tensor product basis
thus consists of functions of the form

o(a;x + ¢;)o(bjy + d;).

In general this does not give a two-dimensional ridge function so we will not
land up with a neural net approximation of the form (2.2). However, there
is one particular choice of o for which the construction does work, namely
o(z) = exp(x). For then we get

o(a;x + c;)o(bjy +d;) = exp(aiz + ¢;) exp(by + dj)
= exp(a;x + bjy + c;d;)
= o(a;z + by + cidy).

This observation has been used by several authors to produce n-dimensional
ridge function approximations. The basic idea is to prove the density of the
ridge functions for the special case of o(z) = exp(z) and then to use a
one-dimensional result such as Theorem 2.1 to approximate the exponential
function by linear combinations of the desired ¢. If we are not interested
in constructive methods then a simple application of the Stone—Weierstrass
theorem (Cheney, 1966, p. 190) will do for the first stage (Diaconis and
Shashahani, 1984; see also Hornik et al., 1989). To avoid writing down
explicit linear combinations of the form (2.2) all the time, we introduce the
following definition: a set of functions is said to be fundamental in a space
if linear combinations of them are dense in that space.

Theorem 2.2 Let K be a compact set in [R*. Then the set E of functions
of the form p(x) = exp(a”x), where a € IR*, is fundamental in C(K).

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 157

Proof. By the Stone—Weierstrass Theorem we need only show that the set
forms an algebra and separates points. Suppose x € K. We first have

exp(alx) exp(bTx) = exp(a?x + bTx) = exp((a? + bT)x).

The set also contains the function ‘1’: simply choose a = 0. This establishes
that F is an algebra. It remains to show that E separates the points of K.
So let x,y € K with x #y. Set a = (x —y). Then al(x —y) # 0 so
alx # aTy. Thus exp(a’x) # exp(aly). The proof is complete. O

Before considering more constructive versions of this result let us complete
the density proof.

Theorem 2.3 Let K be a compact set in IR*. Then the set F' of functions

of the form g(z), defined by (2.2) with ¢ a continuous sigmoidal function,
is dense in C(K).

Proof. Let f € C(K). For any € > 0, there exists (by Theorem 2.2) a finite
number m of vectors a; such that

< €/2.

o0

f- i exp(aj x)
=1

Since there are only m scalars a’ x, we may find a finite interval includin
y i y g

all of them. Thus there exists a number I such that exp(al x) = exp(Ty)
where y = (afx/T") € [0,1]. Then Theorem 2.1 tells us that the function
exp(T'y) can be approximated by linear combinations functions of the form
a(w;rx + ¢;) with a uniform error less than €/(2m), from which the desired
result easily follows. O

Sun and Cheney (see e.g. Light (1992) p. 4) have a more sophisticated
version of this argument which shows that the elements of the vectors w;
and the constants c; may be chosen to be rational numbers (i.e. there is
a countable fundamental set). We will not give the details of their result
as it complicates the proof significantly. However it is possible to draw the
same conclusion by adopting a more constructive approach to Theorem 2.2.
Observe first that T' in the proof of Theorem 2.3 can be chosen to be an
integer, and the numbers A,, n and v in (2.5) are also integers. The only
problem therefore is to show that the vectors a in Theorem 2.2 can be
chosen with rational elements. Moreover, this is also the only part of the
argument above that is not constructive. Chen et al. (1991) and Mhaskar
and Micchelli (1992) get round this by handling the approximation problem
of Theorem 2.2 more explicitly. We will not give full analytical details,
but indicate the method of attack. Once again, this is based on a tensor
product basis. For simplicity, suppose that K is the Cartesian product of
closed intervals. Then if a function f € C(K) is piecewise smooth, it is well

158 S.W. ELLACOTT

known that f may be expanded in a multivariate Fourier series which will
converge uniformly. (If f or K is more complicated, simple expansion is not
sufficient, but methods of classical approximation theory may still be used
to obtain uniform approximations.) Multiplying out terms one obtains an
approximation to f as a linear combination of functions of the form

exp(imiz1) exp(imaxy) exp(imazs) . . . exp(imnzy,)
= exp{i(miz1 +moza + ... + mpzy)},

where i = —1 and the m; € N This is precisely of the form required for

Theorem 2.2 except for the introduction of complex numbers. Actually the
terms occur in complex conjugate pairs so the simplest way to proceed is
to use trigonometric functions instead of the exponential function in The-
orem 2.2. This will make no difference as far as proof of Theorem 2.3 is
concerned.

The method of the previous paragraph also allows the classical Jackson
theorems for trigonometric approximation to be used (Cheney, 1966, pp.
139-49) to obtain an estimate of the degree of approximation like that of
Theorem 2.1. This question of rate of convergence of approximations is
obviously of considerable importance. If f is smooth and we use smooth
approximating functions such as (2.3) we might hope to get better conver-
gence than the simple O(1/n) implied by Theorem 2.1. Apart from a paper
by Mhaskar which we consider shortly, very little attention has been given
to this issue. Although natural in a neural net context, approximating by
piecewise constants as in Theorem 2.1 is a rather odd approach from the
viewpoint of classical approximation theory since obviously it means that
we cannot possibly do better than O(1/n).

To get a better degree of approximation a different starting point is re-
quired: one such approach will be discussed in Section 2.2. But it is also
important to consider which functions we are trying to approximate. To
solve the classification problem described at the start of Section 2, approxi-
mation by discontinuous functions may seem more natural. Even in analogue
applications, it is well known that time optimal controllers may be discontin-
uous. (See Sagan (1969, pp. 295-97) for a simple example.) Thus, while it is
certainly interesting to discuss degree of approximation of smooth functions
by smooth networks, it would also be of value to consider degree of approxi-
mation to discontinuous functions by nonsmooth or discontinuous networks.
Clearly this will require abandonment of the uniform norm and yet the clas-
sical L, norms are not obviously appropriate either. It will be necessary to
examine the applications to derive appropriate measures of smoothness and
error: these may well be Sobolev or measure theoretic based. In addition
we observe that Figure 4 might suggest that two hidden layers rather than
one would be preferable. The argument discussing this figure makes use of

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 159

geometric ideas of closeness: points which are close together in space can
be handled by groups of neurons which deal only with these points. The
success of spline approximations suggests that this is a desirable property,
and it also makes sense from the point of view of understanding knowledge
organization in networks.

Mhaskar (1993) does not solve these problems but he does have some
interesting new insights. Already in Mhaskar and Micchelli (1992) the idea
of a kth degree sigmoidal function is introduced. A function o is said to be
kth degree sigmoidal if

o(z)/z*¥ -1 asz — oo
and
o(z)/zF -0 asz — —oo.

The case k = 0 recovers the ordinary sigmoidal functions. Functions of this
type can be used to approximate a spline of degree k. The idea of Mhaskar
and Micchelli was to replace the piecewise constant function (2.4) by a spline
of higher degree, thus obtaining a better degree of approximation to smooth
f. They then approximate the spline terms by kth degree sigmoidal func-
tions to obtain an approximation of the form (2.2) with a better degree of
approximation to f if £ > 0. (The analytical details are conveniently found
in Light (1992, pp. 28-30).) Of course ¢ is no longer the conventional sig-
moidal function normally used for neural nets. In the later article Mhaskar
uses these ideas in new way. First he deals with the multivariate case di-
rectly, approximating the multivariate f by a tensor product spline. He then
considers the problem of approximating f by a neural network with a fixed
number of neurons but arranged in more than one layer. Both the cases
k =0 and k£ > 0 are considered; the details are slightly different for the two
cases although the basic idea is the same. Multilayer networks involve com-
positions of linear combinations of sigmoidal functions. Mhaskar employs
the fact that the polynomial terms in the splines can themselves be decom-
posed as compositions of linear functions which can be approximated by the
sigmoidal functions. Several interesting results are obtained on the degree
of approximation obtainable by this method when & > 0. Unfortunately the
technical details of Mhaskar’s arguments are quite complicated, but there is
no doubt that the article will repay close study. But of course, k sigmoidal
functions are not the functions actually used in neural nets.

2.2. Dual space and convolution methods of approzimation

Readers familiar with approximation theory will be aware that as well as the
direct constructive approach to density, it is also possible to achieve such
results by methods based on integrals, generally based either on dual space

160 S.W. ErLLacoTT

arguments or convolutions. These methods can be used to address the ques-
tion of density of networks, the most recent work here being the convolution
technique of Xu et al. (1991) who obtain constructive approximations this
way. Although their work requires rather more stringent conditions on o
than the methods of the previous section, it does have certain advantages.
In particular, being based on the use of quadrature formulae, it would seem
to present the possibility of a line of attack for estimating the degree of
approximation to smooth f.

Most of this section will therefore be devoted to convolutions, but first in
the interests of completeness we consider dual space methods. This topic
is of at least historical interest, since Cybenko’s original proof was of this
type (Cybenko, 1989). Since this approach may be rather mystifying to
approximation-theory nonspecialists, we will first describe the fundamen-
tal idea of the method. Consider a normed vector space X over IR The
(bounded) dual space of X, denoted by X’, is the space of all bounded lin-
ear functionals on X. (A linear functional is a linear mapping from X to
R) It has a natural norm defined by

0= sup G0 (26)

lIx|i=1

X' is always a Banach space, even if X is not. (Readers not familiar with
this construction at all are advised to consult a suitable textbook such as
Kreyszig (1978, pp. 119-25).)

Now let V be a subspace of X. We wish to know whether V is dense in
X. The relevance of the dual space is shown by the following theorem.

Theorem 2.4 V is dense in X if and only if the only linear functional
I € X' for which I(v) = 0 for all v € V is the trivial one [(x) = 0.

Proof. Suppose first that V is dense in X. Suppose also that [is a linear
functional ! such that I(v) = 0 for v € V. Let x € X. For any ¢ > 0 we
have v € V with ||x — v|| < e. Then |I(x)] = [I(x) — (V)| = |l(x = v)] <
IlLHIx — v|| < |IZ|le. Since this is true for any € > 0, we must have I(x) = 0.
This establishes the ‘only if’ part of the theorem.

Now suppose that V is not dense in X. Then there isa x € X and a
number § > 0 such that ||x — v|| > é for all v in V. Let W be the space
spanned by x and the space V, i.e. the set of all linear combinations ax + v,
where a € R and v € V. Note that the number o here is unique, for if
a1 + V1 = asx + vo we have (a3 — ag)x = vy — vg, whence we must have
a1 = ag since x € V. Thus we can define the following linear functional on
W :l(ax + v) = a. Note that {(x) =1 and I(v) = 0 for all v € V. Now if
w = ax + v with a # 0,

llax + vl = lalllx + o~ vi| > [i(w)|s

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 161

|i(w)| < fiwll/é.

On the other hand if o = 0, |{(w)| = 0 so the inequality above holds trivially.
This shows that [is a nontrivial bounded linear functional on W. By the
Hahn-Banach Theorem (Kreyszig, 1978 p. 214) | may be extended to a
bounded linear functional on the whole of X. This completes the proof. O

Thus if we want to establish density of V in X we need only show that
any linear functional which annihilates V is, in fact, the zero functional.
This may at first sight seem a harder task than the original one. However
for most function spaces used in practice it is possible to get a concrete
representation of X’ and its norm. This makes the task tractable. In fact it
may be shown (Kreyszig, 1978, p. 227) that for the case of X = C([a, b, any
linear functional may be written

b
I(f) = / f(z) dw(z), (2.7)

where w is a function of bounded variation. (Readers unfamiliar with the
interpretation of this integral are again referred to Kreyszig (1978, p. 226),
but it is convenient to use the Lebesgue integral here rather than the Rie-
mann integral employed by Kreyszig.) So to establish the density of one-
dimensional sigmoidal functions (compare Theorem 2.1) we need only show
that if the integral (2.7) vanishes whenever f is a sigmoidal function, then
necessarily w is constant. This is fairly straightforward. We have

0= /b o(kz + 1) dw() (2.8)

for all k,l € Z. Once again we adopt the basic idea of making k large
enough so that the integrand looks like a step function. For any p,q € Z
with p/q € [a, b], define

0 a<p/q
T($)={ o(l) =z=p/q
1 p/g <z <b

Now consider the expression o(ng(t — p/q)). As n — oo, this expression
converges pointwise to r on [a, b]. By the Lebesgue Dominated Convergence
Theorem we conclude that

b b

0= [r@du@) = [du(@) +o0)wip/a*) - wip/a).
a (p/0)*

The final term denotes the jump in w at the point p/q. Notice that the

integral term does not depend on [so we first let | — —oco. By the definition

of a sigmoidal function, (/) — 0. We conclude that the integral term is

162 S.W. ELLACOTT

zero. By subtraction we may deduce that

0= /ts dw(z) (2.9)

whenever s, t are rational and (by the Lebesgue Dominated Convergence
Theorem using sequences of rational numbers to converge monotonically to
the required end points) we deduce that in fact (2.9) holds for any ¢, s € [a, b].
But this integral is precisely w(s) —w(t), showing that w is, in fact, constant
as required.

Although this result captures the main significance of Theorem 2.1, it is
not as powerful since it does not yield the w(f,1/n) estimate, and it is not
clear how such estimates could be obtained by this approach. So we will
look instead at the use of convolutions.

The idea of the convolution method is to construct a kernel based on
the sigmoidal functions which can be used to approximate the reproducing
property of the Dirac generalized function. The convolution itself and the
kernel are, in turn, approximated by quadrature formulae thus yielding the
required approximation. The material discussed here is essentially that of
Xu et al. (1991) as expounded in that article and in Light (1992). However,
our development will differ in one or two respects.

We first require the basic reproducing property. A problem presents itself
immediately in that the standard Theorem 2.5 below, as quoted by Xu et
al. (Stein and Weiss, 1971, p. 10) requires the function f to be uniformly
continuous on the whole of IR*. In the approximation-theory context, it is
more natural to consider a compact subset K. We therefore need to extend
f from K to R" in a suitable way. Xu et al. take K to be [—v,v] and do not
give the extension explicitly, but clearly such an extension is possible. We
use dV(x) to denote the volume element dzj dzy...dz,. (Both Stein and
Weiss, and Xu et al. use just dz, but we prefer to emphasize that a volume
integral is involved.) To avoid confusion here we also use || - || to denote
the ordinary Euclidean norm on IR*. Norms on the function spaces will be
subscripted 1 or co as appropriate. We also need to extend the notion of
modulus of continuity to IR*: this is simply defined to be

w(f,6) = Sup 1f(x) = f(¥)I-
x=yll<é

Here K C IR" does not need to be compact, but we do need f to be uniformly
continuous on K. We will give a proof of the required convolution result
here, and add a couple of bounds that in some cases might enable results
to be sharpened. Although we will not discuss these in detail in the rest of
the article, it seems worthwhile to give them in order to stimulate further
research on sharp estimates.

Theorem 2.5 Let f be bounded and uniformly continuous on IR* and let

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 163
g € Li(R") with
/ g(x)dV(x) = 1.
RTL

Define gn,(x) = m™g(mx). Then

(a) f * gm(z) converges uniformly to f as m — oo.
(b) For any R > 0,

I % 6m = flle < w5, 2R/ m)lgl + 20o [o) @V),

where ||.]|oo is taken over the whole of IR".
(c) As an alternative to condition (b), suppose that f is Lipschitz with
constant A and that

M= /}R Ixlll9(x)] AV (x) < co.
Then ||f * gm — flloo < MA/m.

Proof. First observe that

gm(x)dV(x) = /R" m"g(mx)dV(x) = /R" g{mx) dV (mx)
= 1 (setting y = mx).

Rn

Hence

(F gm0 = 00 = [(F(x =) = fx))gm(t) 4V ()

SO

|(f * gm)(x) = f(x)]

IA

[176 =0 = £Glgm(®I AVt
= /Rn |f(x = t) = f(x)|lg(mt)|m” AV (t)
- /Rn |f(x —s/m) — f(x)llg(s)|dV(s) (2.10)

where s = mt

[e lsl/mig)1aves)

Clearly w({, ||s|]|/m) is an integrable function of f and converges monotoni-
cally pointwise to zero as m — oo. Hence the integral on the right goes to
zero by the Monotone Convergence Theorem. This establishes (a).

To get (b) we simply split the integration in (2.10) into the two regions
ls|l < R and ||s|| > R and bound each term.

Part (c) is also straightforward: simply write |f(x — s/m) — f(x)| <
Al|s||/m in (2.10). D

IA

164 S.W. ELLAacoTT

The bound given in part (b) of the theorem does not tend to zero as
m — oo unless g has compact support, in which case we can choose R so
that the second term is zero. Since we are going to construct g as an integral
of our sigmoidal functions, compact support will be hard to achieve. On
the other hand, we shall often find that g(x) goes to zero very rapidly as
|x|| — oo, so the bound might well be useful for finite m. Moreover the
conditions of part (c) are likely to hold in many cases of practical interest.
But this will still not yield any better estimates than those we already have
from Section 2.1. Nevertheless, this approach does seem likely to reward
further work with sharper estimates.

Equipped with this basic tool on uniform convergence of convolutions, let
us now consider the work Xu et al. They construct a convolution kernel g
as

o) = oyl [6T ds" w) (2.11)

where ™! is the unit sphere in IR* (i.e. the set {u € R* | [lul| = 1} and
o1 is the ‘surface area’ obtained as the value of the integral with ¢ = 1.
They work on a suitable compact set K in R*. Their choice is actually the
n-dimensional interval K = [—a, a]™ for some real a: the actual choice makes
little difference in the following proof. We assume that f € C(K) and, so
that we can apply Theorem 2.5, extended f continuously to R® in such a
way that f(x) = 0 for x € 2K where for any t > 0,

tK = {x ¢ R* | x/t € K}.

Since f is then continuous on the bounded set 2K we conclude that f is
uniformly continuous and bounded on IR*. The fundamental result is:

Theorem 2.6 Let K = [—a,a]” for some real a, and let ¢ € C(IR) be
uniformly continuous. Suppose g is defined by (2.11). If (i) g € L1(R*) and

(i)
L9(x)dV(x) #0,
R

then the set of functions of the form ¢(xTa+c¢), a € K*, ¢ € R is funda-
mental in C(K).

Proof. Let f € C(K). We extend f to a bounded uniformly continuous
function on JR* as described in the paragraph before the theorem. Rescaling
¢ if necessary, we can assume that the integral of ¢ is 1. Now suppose we
are given € > 0. In view of Theorem 2.5 we may choose m such that

If*g = fllo < /3,

where here we restrict || - || to K. (Note that there would appear to be a
minor error in the the proof of this theorem in both Xu et al. (1991, p. 12)

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 165

and Light (1992, p. 18). The bound in terms of w(f,m~!) is not, in fact,
correct; compare Theorem 2.5(b). Nevertheless the bound as given above is
valid.)

The next step is to approximate the convolution by a quadrature formula.
We have

(Frgm)x) = [omlx=)f®)AV(s) = [glmx = 2)f (2/m)dV (2)

" (2.12)
It is a simple consequence of (2.11) that g is continuous: indeed w(g,d) <
w(¢,). Since the integrand is continuous and 2mK is compact we can ap-
proximate it by a quadrature formula for any particular value of x. But
we need a bound uniform over x. For the present we will just use a simple
Riemann sum approximation as do Xu et al. (However to get sharper esti-
mates it will prove necessary to give closer attention to the approximation
of (2.12).) For any 6 > 0, let P be a partition of 2mK into a finite disjoint
family of Borel sets, each of diameter at most . For each A € P, choose
z4 € A and define

ba = /Af(z/m) dV (z).
So
| gtmx—2)f(a/m)aV(z) = X baglmx - 4)

AeP

< Y [lgtmx —2) = glmx = 24)|1f (2/m) 4V (2)

AeP

<w(9,0) 3 [fla/m)idVi(a)

AeP
=mw(g,9) [1f3)] V().

Hence we can choose § and P so that this error is less than €/3.

Now we apply a similar argument to (2.11). For any 6 > 0, let Q be a
partition of S™~! into a finite disjoint collection of Borel sets of diameter at
most 8. For any B € Q, Set

cg = a;il/ dS™ 1(u)
B
and choose ug € B. We get in a similar fashion to the argument above

lg(mx —z4) = 3 cpg((mx —24) up)| < w(4, [mx —z4[[6).
Be@

But z4 € 2mK so z4/m € 2K. Hence for any x € K,|mx — z4| =
m|x — z4/m| < 3R, where R is the diameter of K. Thus we can choose

166 S.W. ELLACOTT

and B so that the right-hand side of the inequality above is less than
|fll1€/3, whence

> ba <g(mx —2z4) —

AepP

> cpd((mx — ZA)TuB))

BeQ

<¢€/3.

Finally, putting these three approximations together, we find that, for any
x € K,

f(x) — Z Z bacpdp(mxTup — z4up

AEP BeQ

<e. O

Thus, to establish that the functions ¢(xTa +¢), a € R*, ¢ € R are
fundamental, we have two points to check: first that g defined by (2.11) is
in L1(IR*); and second that it has a nonzero integral. We shall find that we
cannot simply take ¢ = o where ¢ is our required sigmoidal function; we
will need to take a linear combination of ¢ terms.

The first question we need to consider is how fast g must go to zero to be
in L1(IR*). We need to do nothing more sophisticated than to bound g(x)
by a suitable power of r = ||z|| when r is large. The next lemma tells us
what power is required.

Lemma 2.7 With r = ||x|,x € R*, and ¢, R € Rwith R > 0, we have

/ r=9dV(x) < oo
IxI>R

if and only if ¢ > n.
Proof. Denoting the sphere of radius 7 by S*~!, we have for p > R

p
/ P9 dV(x) = / = / dsr1dr.
p>xI>R R sp-t

But since S?~! is an (n — 1)-dimensional manifold,

n—1 -1
/Sn_l dS; ™ =r""tan.

(Recall ay,—1 is the area of the sphere of radius 1: see (2.11).) Thus

P P 1 r=a]?
/ r9dV(x) = an_l/ Pl D =,y for ¢ # n.
lIxl|>R R n"=q|gp
Thus the limit as p — oo exists only if ¢ > n. The case ¢ = n yields a
logarithmic integral which also goes to infinity. O

Thus to show that ¢ € Li(IR"), it is sufficient to show that g(x) =
o(JIx||”™) as ||x]] — oo. To do this Xu et al. find an alternative form of
(2.11).

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 167

Lemma 2.8 Let g be defined by (2.11). Then g(x) = go(¢,r) where r =
|x|| and

Qn_2

wor) = 22 [gt - 29 as, (213

Qn1

- Q-2 /T T2—n¢(t)(’r2 _ t2)(n_3)/2 dt’ r 75 0. (214)

Gp—1 J—r
(A function such as g which depends only on 7 is said to be radial.)

Proof. We may assume ||x|| # 0: this point can be ‘filled in’ as a limiting
case since both (2.11) and (2.13) depend continuously on x. So we may
choose a coordinate system with its pole in the direction of x. Let w be a
unit vector in the direction of x, whence w = x/r. Then any point u € S~}
can be expressed as u = wcos 8 + v, where cos# = u’x/r, and v is a unit
vector perpendicular to x with ||v|| = sin§. Moreover we cover the whole of
S™~1 as @ varies from 0 to 7 and v takes all directions orthogonal to x. So

gx) = oty [#(xTu)ds™(w)

= a;ll/ ¢>(rcos(9)/ dS;;g(v)dG
0 Sn—2

siné

where, as in the proof of Lemma 2.7, SZ-2 denotes the (n — 2)-dimensional
sphere of radius sin 6. The inner integral is thus a,_ssin® 2. This estab-
lishes that g is indeed a radial function and we can define go. Moreover, we

have

go(o,7) = On— / ¢(r cos §) sin™ 3 @sin 6 d6.
Qn-1J0
Now put s = cosf, so ds = —sinfdf and sin" 36 = (1 — s2)(»=3)/2 a5

required. (2.14) is obtained by substituting ¢t = rs. O

Now, how do we choose ¢ to give g in L;(IR*)? The essential requirement is
that ¢(t) goes to zero quickly enough at +oo. Let us now consider sigmoidal
functions specifically. We note from (2.13) that g vanishes if ¢ is odd, so we
might as well choose choose ¢ even, although this is not essential. Sigmoidal
functions ¢ tend to 1 at +00, so let us first define

P(t)=o0(l+t)+o(l-1¢t)—1. (2.15)

Note that 9 is even and goes to zero at +0o. Since we expect our functions
o to approximate step functions, it is reasonable to suppose that % goes to
zero quickly. More specifically, let us suppose that o is continuous and is
such that

()] < K™ ¢>n -2 (2.16)

for some real K. Note that if o is the usual choice (2.3), this condition

168 S.W. ELLACOTT

actually holds for any ¢ > 0 as v goes to zero exponentially. The next step
in the argument is to expand the kernel in (2.14). Write A = (n — 3)/2.
From now on we will assume n > 2: n = 2 requires special treatment (Xu et
al., 1991, p. 10), but we will not bother with this here. Let us first consider
the case n odd, so that) is a nonnegative integer. Hence (72 —¢2)* is simply
a polynomial in 7 and ¢, and the integral (2.14) may be taken termwise. We
get

A
go(¢,r) =127 Bi(r)r?A Y (2.17)
7=0
where
Bi(r) = an_s0;1*C; ’ H(t)t%¥ dt. (2.18)

-r

(Here *C; is the usual binomial coefficient.) The condition (2.16) means
that all the 8; converge as r — oo. Hence:

Lemma 2.9 Let n be odd and % satisfy (2.16) and g be defined by (2.11)
with 1) = ¢. A necessary and sufficient condition for g to be in L;(IK*) is
that

/Ooow(t)th dt=0, j=0,...,(n—3)/2. (2.19)

Proof. 1f (2.19) fails for some 7, we see from (2.17) that as r — 00, go(¢,7)
would behave like r~P, where

p=n—-2-22+27<n—-2<n

(compare Lemma 2.7). To get the sufficiency we note that (2.17) and (2.19)
together imply that

A
go(p,7) = =127y (r)r*A Y (2.20)
i=0
with
Y(r) = an_20;lC; W(t)t dt

|t|>r
< an_ga;il*Cj/ K|t|~9%% dt
jt|>r
_ -1 Ay, b 2j—q
T
= 2Kan_gal, Oy

since by hypothesis ¢ > n — 2 > 2j. Substituting this bound into (2.20) we

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 169

find that go goes to zero at least as fast as 7 to the power
2-n+22-2j4+2j—qg+1)=(2-n+n—-3—-q+1)=—¢q, andg>n.

(At at least the same rate as v, in fact.) Thus g(||z||) goes to zero sufficiently
fast. O

At first sight it appears from from (2.17), (2.18) and (2.19) that there is
little hope of finding a nonzero g. But Xu et al. observed that this is not the
case. First we will see that the moment condition (2.19) poses no serious
difficulty. If we replace ¢(t) by @(pt) where p > 1, we have

/ P(pt)t¥ dt = p~(@+1) / #(s)s* ds by the substitution s = pt.
0 0

(2.21)
If we have ¥ (not identically zero) satisfying (2.16) we may choose (say) p = 2
and define ¥(t) = ¥(t), and ¥;(t) = ¥;_1(t) — 2P+ 1y;_1(2t), j =0,..., A
Observe that 1; will still satisfy (2.16) with the same order ¢ but with the
previous K replaced at each stage by (1 + 2% Ft179)K. Also (2.21) means
that the moment condition of (2.19) is satisfied for powers of ¢ up to j: thus
&(t) = ¥(t) will satisfy (2.19) for all the required values of j. (The reader
might be concerned that 1) could vanish identically. However this will turn
out to be impossible in the context we are going to use the result.)
It remains to show that the resulting g cannot have zero integral. Xu et
al. prove the following elegant result.

Lemma 2.10 Let n be odd and v satisfy the conditions of Lemma 2.10
including (2.19). Suppose also 9 is even. Then

/R g(x)dV(x)=—2an_2Tn/ P(t)tm L de
" 0
where

1

Tn = / r(l - 7*2)("_3)/2 dr > 0.

0

Proof.
o0
L 800aVE) = an [T g ar,
" 0

as in the proof of Lemma 2.7
with =7 replaced by go().

— 2, 2/ / D) (r? — 22 4t dr,
by (2.14) since ¥ is even
= %, 2/ / D(t)(r? —) m=3/2 g dr

by (2.19)

170 S.W. ELLACOTT

oo t

= —2ap_9 / W(t) / r(r? — t2)(m=3)/2 4p dt,
0 0
by Fubini’s theorem.

But the inner integral is a constant multiplied by t*~!, and by putting ¢t = 1
we see that the value of the constant is 7,,. 7, is certainly strictly positive,
as its integrand is positive except at 0 and 1. O

Note that it is no real restriction that ¢ be even; we can make it so as in
(2.15). Putting all this together we arrive at the following theorem.

Theorem 2.11 Let o0 € C(IR) and v defined by (2.15). Suppose that n
is odd and K is defined as for Theorem 2.5. Suppose also that i satisfies
(2.16), and that

/ T)t dt # 0.
0

Then the set of functions o(xTa + ¢), a € R*, ¢ € R is fundamental in
C(K). In particular, this is true if o is defined by (2.3).

Proof. This result is basically just an application of Theorems 2.6 and 2.11,
but we do have to worry about the moment condition (2.19). Instead of ¥ in
(2.19) we must use ¢, as defined in the paragraph after (2.21). By a similar
argument to (2.21) we find that for each j in this definition,

[wirtar=a -2 [Ty
0 0

Since j < (n — 3)/2, so the power cannot be zero, we find that the integral
vanishes for 7 = A if and only if it vanishes for j = 0. But by definition
Yo =9.

If o is as defined in (2.3), then a routine calculation shows ¥(t) = (1 —
e 2)/(1+e~2+ 2e ! cosh(t)) > 0 for all t. So the integral in the statement
of the theorem does not vanish. O

We remark also that the restriction ¢ > n in condition (2.16) can also be
relaxed if ¢ is sufficiently well behaved at co. More specifically, suppose

Y(t) ~ Ht™? when g is large.
Then a binomial expansion shows that
Yt +1) — ¢t — 1) ~ —Hgqt~(@+1),

(In fact (2.15) gives one higher order for i than ¢.) We may repeat this
process until the exponent is greater than n. However, we might then have
difficulty in showing that the integral in Theorem 2.11 does not vanish!
The case n even is rather less satisfactory. Lemma 2.9 still holds with in
this case j = 0,...,(n — 2)/2 in (2.19). (Note the increased upper limit.)

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 171

The argument is essentially the same, although a little more care is needed
since the expansion of the kernel is no longer finite in (2.17): we have to
replace the upper limit of the sum by co. Then we need to justify the
termwise integration: details are given in Light (1992, p. 16). However,
the increased power of ¢ that must be annihilated causes a problem. The
first nonvanishing power of ¢ is n. Thus the first nonvanishing power of r
is(2—n)+(—n—3+n)=—(n+1). To obtain the integral of g itself we
must multiply by r"~! and integrate (compare the proof of Lemma 2.10).
The leading power to be integrated is therefore r~2 which integrates to a
1/r term. This suggests that the integral of g will in fact vanish. Xu et al.
devote several pages of analysis to justifying this formally (a process which
unfortunately tends to hide the fact that it is essentially a power counting
argument). Since the integral of g vanishes, we cannot apply Theorem 2.5
directly to the case n even. However this is overcome by averaging in one
higher dimension. Specifically, define

h(x) = a" [9T w) dS™(w),

where for x = (z1,2y,...,2,) € R, X' = (x1,29,...,25,0) € R*"!. Using
similar arguments to those above, we can show that h is a suitable kernel.

Now we have not actually used the fact that o is sigmoidal, only that
¥ defined by (2.15) be uniformly continuous and satisfy (2.16). Xu et al.
also use a slightly weaker condition than (2.16), although it amounts to
the same thing for practical os. But apart from these minor considerations
Theorem 2.11 is actually weaker than Theorem 2.3 since it requires stronger
conditions on ¢. The reader may therefore wonder why we have expended so
much effort on it. However, in our opinion, the approach of Xu et al. offers
at least two attractive features that make it worthy of serious study. First,
it is a direct mutlivariate approach, avoiding the ‘tensor product problem’
discussed in Section 2.1. It thus gives some insight as to how the linear func-
tionals corresponding to the weights in the first layer of the network might
distribute information to the hidden nodes. Second the approach offers at
least hope of providing sharper estimates for smooth f. This is because it
is based on well understood principles of convolution and quadrature.

2.8. Radial basis networks

In Section 2.1 we met some interesting connections between neural networks
and radial functions. Radial functions can also be employed more directly
in neural computation. Look again at the function (2.2) which represents
the function computed by a multilayer perceptron with one hidden layer.
As we have already considered, the c; quantities can be considered roughly
as thresholds; they raise or lower the value at which the sigmoidal function
o switches from its asymptotic 0 value at negative arguments to its 1 value

172 S.W. ELLAacoTT

at positive arguments. The more important part of the argument is the
inner product w;fx. Assuming that the input vectors x all have a similar
normalization, we see that the input to the network node corresponding
to the term a(ijx + ¢;) depends on the projection of the input vector x
onto the weight vector w;. In other words the weight vectors represent ‘test
vectors’ or in artificial intelligence language ‘features’ against which each
input vector x is tested for a match. The closer the alignment, the higher the
response. Perceptron type networks are essentially row projection networks,
a fact which we will investigate in much more detail in Section 3. For the
moment, however, let us consider a different approach.

Suppose that instead of identifying features as row vectors, we identify
them as points. In a classification problem each point w; might be selected
as a typical representative of a known class, or if we do not know suitable
a priori classes they might simply be distributed in some sensible fashion
about the input space. Instead of measuring the projection of x onto each
w;, we consider the distance. We still have a network with the same topology
as Figure 5, but now the input to a given unit is ||x — w;||. The function
computed by the network becomes

k
9(x) = 3 azo(lx = wll): (2.22)
J

Note that the meaning of the second layer weight a; remains unchanged.
We therefore have a linear combination of radial basts functions. The cor-
responding network architecture is known as a radial basis network. There
is an extensive literature of approximation by radial basis functions: see
Powell (1992). Indeed this theory is much more advanced and better un-
derstood than that of ridge function approximation so it is superfluous to
go into details here. We will just explain how radial basis networks are
normally applied. The architecture was first introduced by Broomhead and
Lowe (1988) and this article remains a good explanation of the basic method.
However, certain caveats need to be made in referring to this article now.
First, it was believed at the time of writing that multilayer perceptrons re-
quired two hidden layers to solve the classification problem. The radial basis
architecture was proposed partly as a solution to this problem. However, as
we have already seen, it is now known that only one hidden layer is needed,
at least to obtain density. (The question of whether more layers give a better
degree of approximation is still open, although many authors believe that
the answer will turn out to be affirmative.) In the model of Broomhead and
Lowe we need to choose the centres w;: they cannot be learned (at least not
without resorting to a nonlinear algorithm which is precisely what the au-
thors wished to avoid). Only the a; are adapted in the fitting process. One
could, in principle, choose the weight vectors in (2.2) and therefore solve a

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 173

linear problem for those a; in exactly the same way. Furthermore some of
the comments of the authors on the backpropagation method could be con-
strued as slightly misleading: we will come back to this in the next section.
But notwithstanding these cautions, the idea remains a good one in view
of the well developed theory and good numerical properties of radial basis
functions. The method has retained its adherents. Mason and Parks (1992)
survey this topic in a little more detail, and consider some more recent work.

The actual application is straightforward. First we need to choose a suit-
able activation function o. Broomhead and Lowe recommend either the
Gaussian o(r) = exp(—72) or a multiquadric o(r) = (cp + r2)1/2. We then
assume that our function f that we wish to approximate is given at a set
of points {xj,...,x;}: this is the usual situation in classification problems
(see the introductory remarks at the start of Section 2). The a; are chosen
simply to minimize

Y (f(x5) = g(x5))%.
1=1

This is a standard least-squares problem, which Broomhead and Lowe sug-
gest is solved by computing the Moore-Penrose pseudoinverse (see, e.g.,
Ben-Israel and Greville (1974)). For simple networks the problem can be
solved explicitly: the authors discuss the XOR problem (see Section 1.1) in
some detail.

2.4. The effect of rounding on the approzimation

Our work so far assumes that the weights can be evaluated to arbitrary
precision. In a practical network, especially if implemented in hardware,
one may only be able to store them to eight or 16 bits. There may be
no point in using a very accurate network if its realization introduces large
errors.

This problem has been encountered by various authors: the most system-
atic treatment would appear to be that of Brause (1992). Finite precision
machine arithmetic is a classical issue in numerical analysis, but little deep
theoretical work has been done in this context. The approach of Brause
and others is largely experimental, backed up with some heuristic consider-
ations and simple analysis. Brause’s paper is a little off putting to numerical
analysts at first sight, since it is expressed in the language of information
theory. However, it is actually not difficult to come to grips with. His idea
is to measure the error for a network with a given fixed system information,
by which he means that a fixed total number of bits may be used to express
the weights. So if we attempt to improve the approximation by introducing
more neurons (and hence more weights) we must pay for that by storing the
weights to a lower precision. He then takes two test problems and computes

174 S.W. ELLACcOTT

approximations (using an approximate minimax criterion) for fixed informa-
tion, trading off the number of weights against the precision. He discovers
that for each test problem there is a well defined optimum precision giving
the best achievable error (a result which will not surprise anyone who has
attempted to use finite differences to compute derivatives!).

3. Numerical analysis of learning algorithms

We now turn our attention to some algorithmic aspects of neural networks.
We are going to consider the so-called supervised learning problem which
we will pose as follows (see also Section 2.3).

We are given at a set of points or patterns {xi,...X:} in R*. Associated
with each pattern x; there is a desired response y;. For simplicity we will
assume here that the network is to have a single output so y; is a scalar.
(For the single layer perceptron to be considered first, we shall show that
this involves no loss of generality: the outputs can be treated separately as
described in Section 3.1. For multilayer networks this is not the case, but
nevertheless the single output case is sufficient to illustrate the situation.)
We think of the y; as being values of some function f which we want the
network to ‘learn’: it is supposed to identify some generic features of the
mapping so that when presented with an unknown input x it will estimate
the corresponding y. In mathematical terms we would think of this process
as interpolation (or extrapolation), but in learning theory it is called gener-
alization. To start with, we need some measure of error. In Section 2 we
used || - ||, but this is unlikely to lead to easy algorithms. Moreover the fact
that we are working in IR® and using inner products suggest using a Hilbert
space formulation. Of course, this is not the only choice: entropic mea-
sures also have their advocates particularly among the information theory
fraternity. (See, e.g., Bichsel and Seitz (1989).) However, the basic simplic-
ity of the least-squares approach means that it remains the most popular.
So we formulate our learning problem as one of least-squares optimization.
Suppose the actual output of our network for a given set of parameters is
g(x). For example, for a one-hidden-layer perceptron we have (2.2) with
the parameters a;, w; and ¢;, j = 1,...,k to be chosen. Then our task is
simply to minimize 3" (y; — g(x;))?. Here the sum is over the ¢ patterns x;,
j =1,...,t. (For the case of nonscalar output we need to sum over the out-
puts as well.) As is usual in such problems we do not necessarily need a true
minimum: a ‘good’ solution will do us. (Before getting down to work on this
problem it is worth mentioning the unsupervised learning problem. In this
case we do not know the desired outputs but wish to cluster the patterns
into subsets apparently sharing common features. The most successful ap-

proach to this problem seems to be that of Kohonen: see Wasserman (1989,
Ch. 4).)

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 175

Now having defined our problem a few general words on learning algo-
rithms are in order. First, as expressed in the previous paragraph, the un-
supervised learning problem is the classical one of nonlinear least squares.
If n is not too large, it can be (and often has been) treated by standard
optimization techniques. On the other hand, for very difficult problems
simulated annealing or genetic algorithms can be applied. But we propose
to look at the classic learning algorithms of the delta rule/backpropagation
family, which remain the most popular approaches at least at present. An
essential feature of these is that we only permit the patterns x; to be pre-
sented to the system sequentially: we do not have them there all at once.
Apart from the pragmatic consideration of popularity, there are two reasons
for this restriction, one philosophical and one practical.

e First, mammals do not generally learn by considering a whole set
of data at once. They learn from examples presented sequentially.
Humans are not very good at considering lots of cases at once, and as
far as we can tell, animals cannot do it at all. Yet they do success-
fully learn. To some extent, our least-squares error criterion is justified
as a model of learning by the fact that it can tolerate this sequential
restriction.

e Second, for very large n, second-order methods may simply be be-
yond the capabilities of the available hardware. Serial hardware may
lack sufficient memory or computing power, and massively parallel ma-
chines present severe implementation problems. Sequential learning
algorithms are memory efficient and naturally parallel: as such they
deserve wider consideration even for problems which are not naturally
formulated as ‘learning’: row projection methods are perhaps due for
a renaissance!

Now it may be that in the long term, stochastic algorithms will prove more
biologically plausible. But all of these are basically gradient descent methods
with ‘tricks’ to avoid local minima. (Sometimes, particularly with genetic
algorithms, the tricks are very sophisticated but the generalization remains
valid.) So analysis of the simpler deterministic algorithms will not be wasted.
Basically such analysis amounts to study of the underlying search geometry
of the least-squares problem, which applies equally to the stochastic versions.

Finally, a remark to sceptical numerical analysts! It is often stated that
backpropagation is ‘merely steepest descent’ and therefore unworthy of con-
sideration by serious mathematicians. We shall show here that while it is
certainly a gradient descent method, it is not steepest descent. In fact it has
much better stability properties than steepest descent; one reason indeed for
considering its use more widely!

The work described here first appeared in Ellacott (1990, 1992, 1993b,c).
We mostly consider versions of the linear delta rule algorithm. However

176 S.W. ELLACOTT

a justification of this linearization as an approximation to the nonlinear
backpropagation method will be included.

3.1. The delta rule

We begin by considering the simplest of all neural models, the basic per-
ceptron. Figure 2 shows a perceptron with a single output. We will briefly
consider the case of a multiple output perceptron, so the output is a vector
and the weights form a matrix. To avoid a superfluity of subscripts, denote
the training vectors (generically) by x and desired output vectors by y. We
will ignore the threshold ¢ and instead treat the problem as one of approx-
imation. (It is possible to make ¢ learnable as well by including an extra
input fixed at 1, but we need not consider this here.) If we can approximate
y sufficiently well by the network, then obviously a suitable choice of ¢ will
solve the classification problem if this is what we are interested in. Let W be
the weight matrix. In summary, then, we wish to find W such that y ~ Wx
for all pairs (x,y) of patterns and corresponding outputs. In general it is
impossible to satisfy this exactly, so we seek a W for which the result holds
approximately. The idea of a learning algorithm is as follows: we supply a
set {x1,X2,...,X¢} of input patterns in IR* and for each x; we supply the
corresponding output y;. The system uses these pattern pairs to update its
estimate of the desired weight matrix W. As we have already remarked, a
learning algorithm is at heart simply an optimization process, but it has the
special feature that the patterns are supplied serially rather than simulta-
neously as in standard least-squares approximation and optimization. The
process of applying a learning algorithm is called training the network. Once
training is complete, the system will be presented with previously unknown
patterns x and used to predict the corresponding y.

Although not the original perceptron algorithm, the following method
known as the delta rule is generally accepted as the best way to train such a
network. We assume initially that W is updated after each training pattern.
The change in W when the pattern x is presented is given (Rumelhart and
McClelland, 1986, p. 322) by

(6W)j: = n(y; — (Wx);)xi,

where 7 is a parameter to be chosen called the learning rate, and (Wx);
denotes the jth element of Wx. Thus if the error term in brackets is (say)
positive, we will add a component of x to each row of W, increasing the
output of the network for this pattern. Conversely if the error is negative, a
component of x is subtracted, reducing the output for this pattern. In fact,
we can simplify matters here by observing that there is no coupling between
the rows of W in this formula: the new jth row of W depends only on the
old jth row. This enables us to drop the subscript j, denoting y; just by y,

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 177

and the jth row of W by the vector wT. Hence without loss of generality
we return to the single output perceptron (Figure 2). We get

bw; = n(y — wa)xi,
S0

T

bw = n(y — w' x)x.

Thus given a current iterate weight vector wy,

Wkl = Wi+ 0wy
= wy +7(y — wEx)x
= (I —pxxT)wy + nyx. (3.1)

The final equation is obtained by transposing the (scalar) quantity in brack-
ets. Note the bold subscript k here, denoting the kth iterate, not the kth
element. Observe also that the second equation makes clear what the delta
rule actually does: it adds a suitable multiple of the current pattern x to
the current weight vector (compare the discussion in Section 2.3). It is pos-
sible to analyse this iteration in the asymptotic case as n — 0, but it is not
used this way in practice. It is more relevant to consider a fixed n (Ellacott,
1990). We now prove some results about this iteration: the first lemma is a
special case of a well known result (see, e.g., Oja (1983, p. 18)). The proof
is a direct verification.

Lemma 3.1 Let B = (I — nxx?). Then B has only two distinct eigen-
values: 1 — n||x||?> corresponding to the eigenvector x and 1 corresponding
to the subspace of vectors orthogonal to x. (Here || - || denotes the usual
Euclidean norm.)

As an immediate consequence (see Isaacson and Keller (1966, p. 10, equa-
tion (11))) we obtain

Lemma 3.2 Provided 0 < 5 < 2/||x||?, we have ||B]|| = p(B) = 1, where
p(B) is the spectral radius of B.

Now suppose we actually have ¢ pattern vectors xi,...,x;. We will assume
temporarily that these span the space of input vectors, i.e. that the set of
pattern vectors contains n linearly independent ones. (This restriction will
be removed later.)

Now for each pattern vector xp, we will have a different matrix B, say
Bp = (I - ’I]prg). Let A= BtBt—l cee Bl-

Lemma 3.3 If 0 < n < 2/||xpl|* holds for each training pattern xp, and
if the xp span, then ||A]] < 1.

Proof. By definition, there exists v such that ||A|| = ||Av]| and ||v]] = 1.

178 S.W. ELLACOTT

Thus ||A|| = ||B¢Bt~1 ... B1v|| < ||BtBt-1- .. B2||||B1v|| (from the definition
of the norm). We identify two cases:

1 IfvIx; #0, ||By1v| < 1, since the component of v in the direction of
x is reduced (see Lemma 3.1: if this is not clear write v in terms of x
and the perpendicular component, and apply B to it.) On the other
hand || B;Bi-1 ... Byl < ||Be||| Be-all - - - || Ball = 1.

2 Ifvlx; =0, then B;v =v (Lemma 3.1). Hence

|All =1|B¢Bi-y ... Bav|

and we may carry on removing Bs until Case 1 applies. Note that v
cannot be orthogonal to all the xp since by hypothesis they span. O

A common way to apply the delta rule is to apply patterns x1,xX2,...X¢
in order, and then to start again cyclically with x;. The presentation of one
complete set of patterns is called an epoch. Assuming this is the strategy
employed, iteration (3.1) yields

Wkt = Awg +nh (3.2a)
where A is as defined above and
h = yl(BtBt—l e B2)X1 + ... yt—ltht—l + YtXt- (32b)

Here, of course, y, denotes the target y value for the pth pattern, not the
pth element of a vector. Note that the Bs and hence h depend on 7 and the
xs, but not on the current w.

Since §W in the delta rule is proportional to the error in the outputs, we
get a fixed point of (3.1) only if all these errors can be made zero, which
obviously is not true in general. Hence the iteration (3.1) does not in fact
converge in the usual sense. On the other hand, we have shown (Lemma 3.2)
that provided the xp span the space of input vectors, then for sufficiently
small 7, ||A|| < 1. Hence the mapping F(w) = Aw + nh satisfies

IF(w) = F(v)|| = |A(w = v)ll < {[Allllw = v,

i.e. it is contractive with contraction parameter |A|. It follows from the
Contraction Mapping Theorem that the iteration (3.2a) does have a unique
fixed point. Now if there exists a w that makes all the errors zero, then it is
easy to verify that this w is a fixed point of (3.1) and hence also of (3.2a).
Otherwise, (3.1) has no fixed points, and the fixed point of (3.2a) depends
on 7: we denote it by w(n). In the limit, as the iteration (3.1) runs through
the patterns, it will generate a limit cycle of vectors wy returning to w(n)
after the cycle of ¢t patterns has been completed.

Since w(7n) is a fixed point of (3.2a) we have (writing h = h(n) and
A = A(n) to emphasize the dependence)

w(n) = A(n)w(n) + nh(n). (3.3)

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 179

Now what can we conclude about w(7)? Let us denote by w* the weight
vector w (unique since the xp span) that minimizes

t

=) (yp— wixp)?. (3.4)
p=1
Denote by X the matrix whose columns are x,Xs,...,Xs, and let
t
L=XX"=3 xpx]. (3.5)
p=1

Then w* satisfies the normal equations

t
p=1
The second equality follows from (3.2b), observing that all the B matrices
tend to the identity as 7 — 0. On the other hand from (3.3) we get

H(m)w(n) = h(n) where H(n) = (I - A)/n.

Since by hypothesis the patterns span, L™ exists. We define the condition
number k(L) := ||L7 ||| L||. Moreover L is symmetric and positive definite,
so k(L) is equal to the ratio of the largest and smallest eigenvalues of L
(compare Isaacson and Keller (1966, p. 10, equation (11))).

A standard result on the solutions of linear equations (Isaacson and Keller,
1966, p. 37) gives, provided |[L — H(n)|| < 1/||IL7!]],

[w(n) —w"| K(L) [lh(n) —h(O) , IL-HMm)I
Wl = T=ILTIL - B@l < @I T I)

but
¢

An) = [T = mxpx})
p=1

and considering powers of 7 in this product we obtain

i
A(n) = I-nY_ xpx} +O(n?)
p=1

= I—qL+0®?).
Thus H(n) = L+O(n). Also an examination of the products in (3.2b) reveals

=L+
h(n) = h(0) + O(n). Putting all this together gives most of the following
theorem.

Theorem 3.4 Suppose that the pattern vectors xp span R*, and that w*
is (as above) the weight vector which minimizes the least-squares error of the

180 S.W. ELLACOTT

outputs over all patterns. If the delta rule is applied with fixed 7 satisfying
the condition of Lemma 3.3, then the weights will converge to a limit cycle.
Let w(n) be any member of the limit cycle, then as — 0,

(a) |lw(n) —w*|| = O(n).
(b) If e(n) is the root-mean-square error corresponding to w(n) (see (3.4)),
and €* is the corresponding error for w*, then e(n) — ¢* = O(n?).

Proof. Convergence to a limit cycle has already been established. (a) fol-
lows from the remarks immediately preceding the theorem. (b) is simply
the observation that for a least-squares approximation problem, the vector
of errors for the best vector w* is orthogonal to the space of possible ws, so
an O(n) error in w* yields only an O(5?) increase in the root mean square
error. [J

Unfortunately the rate of convergence is proportional to (L), and as we
shall see in the next subsection this can be large.

Finally we need to consider what happens when the xp do not span the
input pattern space. In this case it follows from Lemma 3.1 that the it-
eration (3.1) leaves the orthogonal complement of the span invariant. By
decomposing the input space into the span and its orthogonal complement,
a straightforward modification of the argument above shows that (3.2) is
contractive on the span of the input patterns, so we still get convergence to
a limit cycle. However, then L fails to be invertible, and discussion of the
behaviour as 7 — 0 requires examination of the singular vectors of L.

An interesting sidelight on the argument above is to consider what would
happen if we presented the patterns during each epoch in random order,
while still insisting that the whole set of patterns is presented precisely
once during the epoch. With this approach, each epoch would still give a
contractive mapping, but this mapping would be different for each choice
of order. Since there is a large but finite number of such permutations of
order, we have an iterated function scheme (Falconer, 1990, Ch. 9). We may
expect a fractal attractor, even though this iteration is linear.

3.2. The ‘Epoch Method’

Since we are assuming that we have a fixed and finite set of patterns xp,p =
1,...t, an alternative strategy is not to update the weight vector until the
whole epoch of patterns has been presented. This idea is initially attractive
since we shall see that this actually generates the steepest-descent direction
for the least-squares error. We will call this the epoch method to distinguish
it from the usual delta rule. This leads to the iteration

t t
Wk+1 = Wk —7 E(prg)wk +7n Z(ypxp)
p=1 p=1

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 181

t
= Qwyx -7) (ypXp), (3.6)
p=1
where
Q=T -nXXT)=(I-qL).

(3.6) is, of course, the equivalent of (3.2a), not (3.1), since it corresponds
to a complete epoch of patterns. There is no question of limit cycling,
and, indeed, a fixed point will be a true least-squares minimum w*. To see
this, put wy,; = wy = w* and observe that (3.6) reduces to the normal
equations for the least-squares problem. Moreover, the iteration (3.6) is
simply steepest descent for the least-squares problem, applied with a fixed
step length. Unfortunately, however, there is a catch! To see what this is,
we need to examine the eigenvalues of .

Clearly L = X X7 is symmetric and positive semidefinite. Thus it has
real nonnegative eigenvalues. In fact, provided the xp span, it is (as is well
known) strictly positive definite. The eigenvalues of £ are (1 — 7) x (the
corresponding eigenvalues of L), and for a strictly positive definite matrix
all the eigenvalues must be strictly positive. Thus we have for 7 sufficiently
small, p(Q) = ||| < 1.

Hence the iteration (3.6) will converge, provided the patterns span and
n is sufficiently small. But how small does 1 have to be? (Recall that for
the usual delta rule we need only the condition of Lemma 3.3.) To answer
this question we need more precise estimates for the spectrum of L and the
norm of 2. From these we will be able to see why the epoch algorithm does
not always work well in practice.

Suppose L = X X7 has eigenvalues Aj, 7 =1...n, with

0< A €A1 < S A = p(XXT) = |1 XXT)| = | X712

The eigenvalues of Q are (1 —nA;) < (1 —nXy) < ... < (1 —n)\,), and
p(2) = max{|1 — nAl|, |1 — nA,|}. (Observe that Q is positive definite for
small 7, but ceases to be so when 7 becomes large.) Now

A= | XT)? = Hm”axl 1XTv|? = ”m”ax vixxTy < } " {lxplI. (3.7)
Vi|l=
p=1

On the other hand, we can get a lower bound by substituting a particular
v into the expression on the right-hand side of (3.7). For instance, we have
forany k, k=1,...,¢,

(Zxkxp) > 68)

Now consider a particular case.

1 el
(B

182 S.W. ELLacoTT

Suppose the xp cluster around two vectors u and v which are mutually
orthonormal. If these represent two classes which are to be separated, we
are in an ideal situation for machine learning: the pattern classes are in two
widely separated convex sets. However, even in this case the behaviour of
the epoch method is not good. If the clusters are of equal size, we have from
the first inequality in (3.8)

liH(l) A1 > /2 and since the rank of L = X X7T collapses to 2, liII(l) An = 0.

Thus, unlike the ordinary delta rule for which the convergence condition
depends only on the norm of the indiwvidual patterns, for the epoch method
(i.e. steepest descent) we may require an arbitrary small p to get convergence.
As promised we have shown that the delta rule is much more stable.

3.3. Generalization to nonlinear systems

As we saw in Section 1, the usefulness of linear neural systems is limited,
since many pattern recognition problems are not linearly separable. We need
to generalize to nonlinear systems such as the backpropagation algorithm for
the multilayer perceptron. Clearly we can only expect this type of analysis
to provide a local result: global behaviour is likely to be more amenable
to dynamical systems or control theory approaches. Nevertheless, a local
analysis can be useful in discussing the asymptotic behaviour near a local
minimum.

The obvious approach to this generalization is to attempt the ‘next sim-
plest’ case, i.e. the backpropagation algorithm. However, this method looks
complicated when written down explicitly: in fact much more complicated
than it actually is! A more abstract line of attack turns out to be both
simpler and more general. We will define a general nonlinear delta rule, of
which backpropagation is a special case. For the linear network the dimen-
sion of the input space and the number of weights are the same: n in our
previous notation. Now we will let M denote the total number of weights
and n the input dimension.

So the input patterns x to our network are in R*, and we have a vector w
of parameters in RM describing the particular instance of our network: i.e.
the vector of synaptic weights. For a single layer perceptron with m outputs,
the ‘vector’ w is the the m x n weight matrix, and thus M = mn. For a
multilayer perceptron, w is the Cartesian product of the weight matrices in
each layer. For a general system with m outputs, the network computes a

function g : RY x R* — R™. Say
v =g(w,x),

where v € R™. We equip RM , R™ and R* with the Euclidean norm. For

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 183

pattern xp, denote the corresponding output by vp, i.e.
vp = g(w,xp).

We assume that g is Frechét differentiable with respect to w, and denote
by D = D(w,x) the m x M matrix representation of the derivative with
respect to the standard basis. Readers unfamiliar with Frechét derivatives
may prefer to think of this as the gradient vector: for m =1 it is precisely
the row vector representing the gradient when g is differentiated with respect
to the elements of w. Thus, for a small change éw and fixed x, we have (by
the definition of the derivative)

g(w + éw,x) = g(w,x) + D(w,x)éw + of||éw]|). (3.9)

On the other hand for given w, corresponding to a particular pattern xp,
we have a desired output yp and thus an error ¢, given by, say,

6121 =(yp — Vp)T(Yp —Vp) = ngp. (3.10)

The total error is obtained by summing the ef,s over the t available patterns,
thus

t
2 _ 2
€ —E €p-
p=1

An ordinary descent algorithm will seek to minimize 2. However, the class
or methods we are considering generate, not a descent direction for €2, but
rather successive steepest descent directions for 612,. Now for a change éqp
in qp we have from (3.10)

862 = (qp +6qp)’(qp + éqp) — apap
= 26qIT,qp + 5q£§qp.
Since yp is fixed,
dqp = —6vp = —D(w,xp)éw + o(||6w]|) by (3.9).

Thus

8¢, = —2(D(w,xp)éw)" (yp — g(w,xp)) + o([|6w])

= —26w"(D(w,xp))" (yp — (W, xp)) + o([[6w])).

Hence, ignoring the o(||6w||) term, and for a fixed size of small change éw,
the largest decrease in €} is obtained by setting
ow = W(D(Waxp))T(Yp - g(w,xp)).

This is the generalized delta rule. Compare this with the single output linear
perceptron, for which the second term in this expression is scalar with

g(W, xp) = wapa

184 S.W. ELLACOTT

and the derivative is the gradient vector (considered as a row vector) ob-
tained by differentiating this with respect to w, i.e. xg. Thus we indeed
have a generalization of (3.1). Given a kth weight vector wy, we have

Wki1 = Wkt 0wy
T

= Wk‘f’??(D(Wk,Xp)) (YP —g(Wk,Xp)). (311)
To proceed further, we need to make evident the connection between (3.11)
and the analysis of Section 3.1. However, there is a problem in that, guided
by the linear case considered above, we actually expect a limit cycle rather
than convergence to a minimum. Nevertheless it is necessary to fix attention
to some neighbourhood of a local minimum, say w*, of the least-squares error
e: clearly we cannot expect any global contractivity result as in general
may have many local minima, as is well known in the backpropagation case.

Now from (3.10) and (3.11) we obtain (assuming continuity and uniform
boundedness of D in a neighbourhood of w*),

Wil = W+ U(D(Wkaxp))T(Yp —g(w*, xp) — D(W",xp)(wg — w"))
+o(|lwy — w*||)

(I — nD(wy, xp)" D(W*, xp)) Wi + 1(D(wy, xp))"

x(yp — g(W*,xp) + D(W",xp)w") + o([|lwy — w7[[). (3.12)

Il

The connection between (3.11) and (3.1) is now clear. Observe that the
iteration matrix (I — nD(wy, xp)T D(W*,xp)) is not exactly symmetric in
this case, although it will be nearly so if wy is close to w*. More precisely,
let us assume that D(w,x) is Lipschitz continuous at w*, uniformly over
the space of pattern vectors x. Then we have

Wk+1 — (I - UD(W*7Xp)TD(W*7xp))Wk + W(D(W*,xp))T
x(yp — 8(W",xp) + D(W*, xp)W") + O([jwy, — w*|]).
(3.13)

Suppose we apply the patterns xy,...x¢ cyclically, as for the linear case. If
we can prove that the linearized part (i.e. what we would get if we applied
(3.13) without O term) of the mapping wy — Wy ¢ is contractive, it will
follow by continuity that there is a neighbourhood of w* within which the
whole mapping is contractive. This is because, by hypothesis, we have only
a finite number of patterns. To establish contractivity of the linear part, we
may proceed as follows.
First observe that

D(w*,xp)TD(w*,xp)
is positive semidefinite. Thus for 7 sufficiently small,

11— nD(w*,xp)TD(w*,xp)H <1.

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 185

We may decompose the space of weight vectors into the span of the eigen-
vectors corresponding to zero and nonzero eigenvalues respectively. These
spaces are orthogonal complements of each other, as the matrix is symmet-
ric. On the former space, the iteration matrix does nothing. On the latter
space it is contractive provided

1< 1/p(D(w*,xp)" D(W", Xp)).

We may then proceed in a similar manner to Lemma 3.3, provided the
contractive subspaces for each pattern between them span the whole weight
space. (If this condition fails then a difficulty arises, since the linearized
product mapping will have norm 1, so the nonlinear map could actually be
expansive on some subspace. We will not pursue this detail here.) For the
single output case, D(w*,Xp) is just a row vector, and we can identify the
eigenvectors explicitly as in Lemma 3.1.

The backpropagation rule (Rumelhart and McClelland, 1986, pp. 322-
328) used in many neural net applications is a special case of this. The
name backpropagation derives from the fact that for an multilayer percep-
tron, the necessary terms in this expression can be calculated recursively
back from the top layer. However, this is not relevant to our analysis here.
We should make it clear, however, that backpropagation is rarely used in
this ‘pure’ form. Rumelhart and McClelland themselves advocate the use
of a ‘momentum term’ which is somewhat analogous to the Levenberg Mar-
quardt method used in classical optimization (Moré, 1978). Moreover, the
literature abounds with acceleration techniques. Fombellida and Destiné
(1992) discuss two of the most popular: the delta-bar-delta and quickprop
methods. They do some numerical comparisons and actually suggest a hy-
brid of the two methods as the most effective. However, none of the methods
appears to have been subjected to any serious numerical analysis! A novel
approach to accelerating backpropagation has been suggested by Almeida
and Silva (1992). This is somewhat related to the work to be discussed in
Section 3.4, so we defer consideration of this paper until Section 4.

3.4. The singular value decomposition and principal components

Since we now know that the backpropagation rule can be realistically con-
sidered as behaving locally like the delta rule, it makes sense to return to
a closer study of the linear algorithm. Several interesting results can be
obtained from Singular Value Decomposition (SVD). This is unsurprising in
view of the well known connections between neural nets and statistical de-
cision theory. Unfortunately they are easily obtained only for the algorithm
in its ‘epoch’ form (3.6). This is a pity in view of the previous analysis,
but since the algorithms are at least asymptotically the same for small 7,
they seem nevertheless worth having. Not all of the results in this section

186 S.W. ELLACOTT

are really new, but it is difficult to find a formal and coherent exposition
of them in the literature. This attempt at a systematic description is thus
worthwhile.

Firstly, we can provide a simple explanation for the well known pheno-
menon of overgeneralization reported in many practical studies with neural
networks. This is the observation that better results may well be obtained
if the iteration is not continued to convergence. These problems are closely
related to the issue of nonspanning patterns which we have already encoun-
tered. In many network applications such as vision, we may have a very large
number of free weights. For example, even a medium resolution 64 x 64 im-
age will have 4096 pixels. If we feed this into the network without any
compression we will have at least this many weights. If we are training the
network to recognize (say) a certain object in a set of images, it is most un-
likely that we will have enough data to prevent the problem being severely
underdetermined. But in fact, the delta rule (even in epoch form) can cope
with this if the number of iterations is restricted: it includes a kind of built
in compression. Recall (3.6):

t

i1 = Qwi — 1) (ypXp),
p=1

where @ = (I — X XT). We decompose X in singular value form. (See,
e.g., the chapters by Wilkinson and Dennis in Jacobs (1977, pp. 3-53 and
269-312) respectively. Also Chapter 6 of Ben-Israel and Greville (1974).)
Specifically we may write

X =PsqQT (3.14)

where P and Q are orthogonal and S is diagonal (but not necessarily square).
Recall that in this context y is not a single output vector but the vector of
single outputs over all the patterns. We find

wir1 = (I —nPSSTPT)wy —nXy,
= P(I-7nSST)PTwy —nPSQTy
or, with zy = PTwy and u = PTy,
zyy1 = (I —1nSS8T)zy — nSu. (3.15)

At this point the notation becomes a little messy: let us denote by (zy)
the ith element of z). These elements are decoupled by SVD. More specifi-
cally, suppose X has r nonzero singular values (the diagonal elements of 5)
v1 > vy > ... > vy, (3.15) when written elementwise gives

(zis1)i = (1 — qvd)(zy)i — mviwg, fori=1,...,7

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 187

and
(Zke1)i = (2)i fori=r+1,...,n.

Assuming that 7 is sufficiently small to guarantee convergence (i.e. all terms
(1 — nv?) < 1), it is easy to see that convergence will be very much faster
for the (zy); corresponding to the larger singular values. This is exactly
what we would like. Since P and @ are orthogonal matrices their rows and
columns have norm 1. Thus we see from (3.15) that the large singular values
correspond to the actual information in the pattern data X. (This approach
is called principal component analysis.) The delta rule (in epoch form at
least) has the nice property of converging on the principal components of
the data first. Unfortunately it is very hard to tell from the iteration when
this has occurred since small singular values can make a large contribution to
the least-squares error. This explains the phenomenon of overgeneralization.
Initially the iteration picks out significant features in the variability of the
data. Continued iteration makes it try to separate insignificant features or
noise.

In view of the problems of slow convergence and underdetermination,
many authors have commented on the advisability of performing some pre-
processing of the input patterns before feeding them to the network. Often
(not always, of course) the preprocessing suggested is linear. At first sight
this seems to be a pointless exercise, for if the raw input data vector is x
with dimension n’, say, the preprocessing operation is represented by the
n x n’ matrix T, W is the input matrix of the net and we denote by the
vector h the input to the next layer of the net, then

h =WTx. (3.16)

Obviously, the theoretical representational power of the network is the
same as one with unprocessed input and input matricx WT. However, this
does not mean that these preprocessing operations are useless. We can
identify at least the following three uses of preprocessing.

1 to reduce work by reducing dimension and possibly using fast algo-
rithms (e.g. the FFT or wavelet transform) (so we do not want to
increase the contraction parameter in the delta rule iteration);

2 to improve the search geometry by removing principal components of
the data and corresponding singular values that are irrelevant to the
classification problem;

3 to improve the stability of the iteration by removing near zero singular
values (which correspond to noise) and clustering the other singular val-
ues near to 1: i.e. in the language of numerical analysis to precondition
the iteration.

We will not address all these three points explicitly here. Instead we will

188 S.W. ELLACOTT

derive some theoretical principles with the aid of which the issues may be
attacked. The first point to consider is the effect of the filter on the stability
of the learning process. For simplicity, we again consider only the linear
epoch algorithm here.

We hope, of course, that a suitable choice of filter will make the learning
properties better, but the results here show that whatever choice we make,
the dynamics will not be made much worse unless the filter has very bad
singular values. In particular, we show that if the filter is an orthogonal
projection, then the gradient descent mapping with filtering will be at least
as contractive as the unfiltered case.

We see from (3.6) that the crucial issue is the relationship between the
unfiltered update matrix

Q= -9Xx7) (3.17)
and its filtered equivalent
(I —gTXXTTTy = (3.18)

say.

Note that these operators may be defined on spaces of different dimension:
indeed for a sensible filtering process we would expect the filter T to involve
a significant dimension reduction. Recall that € in (3.17) is n x n and let
us take €’ to be n’ x n’. Note also that for purposes of comparison we have
assumed the learning rates are the same.

A natural question is to try to relate the norms of these two operators,
and hence the rate of convergence of the corresponding iterations. As before,
we suppose L = X X7 has eigenvalues Aj, 7 =1...n, with

0< A <A1 <0 S A = p(XXT) = | XXT| = | X2

(Note here we assume the xs span so A, # 0. In terms of the singular values
vi of X, v? = \;.)

We need to relate the eigenvalues of X X7 with those of TXXTTT = L',
say. Let L' have eigenvalues p; > o > ... > pn > 0 and T have singular
values o1 > 09 > ... > 0, > 0. Note that we are assuming T has full rank n’
and so has no nonzero singular values. This is a reasonable assumption since
there is no point in using a filter which has a nontrivial kernel. We should
reduce the codomain dimension of the operator instead. For example, an
orthogonal projection is formally defined as a mapping from (say) R to
itself. However, in practice, if we use an orthogonal expansion as a filter,
we will reduce the dimension by choosing an orthogonal basis for the image
and ignoring the rest of the basis required to span R*.

Proposition 3.5 With the notation above, pu; < af/\l and f, > 0721,/\".

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 189

Proof. 'The first inequality is straightforward. Since L and L’ are symmetric
p = ITXXTTT < | TINXXTITT| = ofAs.

The second inequality is slightly more difficult. Let u, be the normalized
eigenvector of L' corresponding to u,. Then

= 0l ppug = ulTX XTTTu, = || XTT uy)?.
But | XTTTuy| > A 200 as may be found by writing both matrices in
terms of their SVDs. O

This result means that ||Q|| cannot be much larger than [|Q]| if T has
singular values close to 1.

Corollary 3.6 Let T be a truncated orthogonal expansion, or any other
filter that is the restriction of an orthogonal projection to the orthogo-
nal complement of its kernel (e.g. unweighted local averaging: see Ellacott
(1993a)). Then with filtering applied the epoch method will converge at
least as fast (as expressed by its contraction parameter) as the unfiltered
version.

Proof. All the singular values of an orthogonal projection are either 0 (cor-
responding to the kernel) or 1 (corresponding to the image). It follows from
Proposition 3.5 that the norm of ' in (3.18) cannot be greater than that of
Qin (3.17). O

The result above gives us some insight into the uses of filters for data com-
pression, although its extension to the nonlinear case is not obvious: filters
are applied to the input of a multilayer perceptron, whereas to employ this
result directly we would need to apply them to the tangent space: compare
(3.13). Let us turn now to the issue of preconditioning. An ideal choice
of filter to act as a preconditioner would not require knowledge of the par-
ticular data set under consideration, but this would seem to be an almost
impossible requirement since the matrix €2 is defined in terms of this data.
The best one might hope for is something that would work for large classes
of data sets in a particular context such as vision or speech recognition. In
other words we might try to derive information from the problem domain,
and use this to construct the filter. As an illustration of the difficulties, we
show that the theoretically optimal preconditioner for the delta rule in epoch
form is both easily described and completely useless! Suppose, as above, X
has SVD PSQT. We set the filter matrix T' to be the Moore-Penrose pseu-
doinverse of X (see, e.g., Ben-Israel and Greville (1974)) which we denote
by X#. So

T=X#=0Qs*PT.

190 S.W. ELLACOTT

Then
TX = QS*PTPSQT = Qs#sQT.
Thus (with the same notation as before Proposition 3.5)
L' =TXXTTT = Qs# 55T s#TQT,

and S#SSTS#T is a diagonal matrix with diagonal elements either 0 or 1.
Thus all the eigenvalues of L’ are either 0 or 1 and, indeed, if the xs span
so that X X7 has no zero eigenvalues, then all the eigenvalues of L’ are 1.
With n = 1, the iteration will converge in a single iteration. This is not
surprising, since once we know X#, the least-squares solution for w may be
given explicitly! (For the nonlinear case we would need to compute the local
pseudoinverses for the relevant tangent vectors.)

A modification of the approach which might be slightly more practicable
is just to remove the large eigenvalues of X X7 based on computation of
the dominant singular values, and corresponding singular vectors, of X. We
present an algorithm for removing the principal components one at a time.
Whether an approach based on removal of individual singular values is going
to be very useful for the interesting case of very large n is debatable: it may
help if the data matrix X is dominated by a few principal components with
large singular values but otherwise it it likely to be too inefficient. However,
the method does suggest ways forward. (A recent paper (Oja, 1992) also has
some relevance to this problem, as does the method of Almeida and Silva
(1992) which we consider in Section 4.1.)

The first stage is to compute the largest eigenvalue and corresponding
eigenvector of X XT. This may be carried out by the power method (Isaacson
and Keller, 1966, p. 147) at the same time as the ordinary delta rule iteration:
the computation can be performed by running through the patterns one at
a time, just as for the delta rule itself. We get a normalized eigenvector pj
of XXT corresponding to the largest eigenvalue A; of X XT. Set

T =1+ " -1)pip].

A routine calculation shows that TXXTTT has the same eigenvectors as
XXT, and the same eigenvalues but with A; replaced by 1. Each pattern
xp should then be multiplied by T, and, since we are now iterating with
different data, the current weight estimate w should be multiplied by T—}.
It is easy to check that

T =1+ - 1)p1p].

Basically the same idea can be used for the iteration with the weights up-
dated after each pattern. However there is a problem in that the update
matrix A is not exactly symmetric, although it is nearly so for small . This
could be overcome by computing the right as well as left eigenvectors of

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 191

(A = I)/n, but unfortunately this would require presenting the patterns in
reverse order: somewhat inconvenient for a neural system. Another possi-
bility is to perform two cycles of the patterns, with the patterns in reverse
order on the second cycle. The composite iteration matrix ATA will then be
symmetric. Although space and the requirements of simplicity do not per-
mit a full discussion here, there is no reason in principle why this algorithm
should not be applied to the nonlinear case.

4. Some numerical applications of neural networks

The most successful applications of neural networks have been in pattern
recognition areas such as speech, vision and nonlinear control, where sat-
isfactory existing models do not exist. The power of the approach is the
ability of the network to construct its own model. However it is also possi-
ble to design networks to solve some standard mathematical problems. We
will conclude our survey by looking at some of these. Of course, it is not
suggested that these methods will out-perform standard algorithms when
run on conventional machines. So why should we study these methods?
First, as we saw in the previous section, there are close connections between
linear algebra and the methods of filtering and data compression used in
neural network applications. To design suitable filters we need networks
to perform linear algebra calculations. Second, neural network algorithms
are naturally parallel. They lend themselves easily to implementation on
array processors. Moreover we do not in fact even need the power of cur-
rent parallel machines. The whole point of neural networks is that they use
large arrays of very simple nonprogrammable processors. Neural network
chips are already starting to appear. When these become large enough and
cheap enough it will become possible to design hard-wired circuitry to per-
form a range of standard tasks. Of particular interest are problems such
as the travelling salesman problem which involve optimization on graphs.
This problem is of course NP complete so we cannot guarantee to find an
optimum solution. But it turns out that we can find good solutions quickly
if we can build a large enough neural network. Thus in this last section we
focus on the two issues of linear algebra and optimization.

4.1. Linear algebra applications

We first observe that the delta rule itself may be regarded as a row-projection
method for solving linear equations in the least-squares sense. If we have
a single output linear perceptron with pattern vectors xj,...,x¢ forming
the columns of a matrix X, and corresponding required outputs y1,..., 4,
formed into a vector y, then the delta rule will approximately minimize
ly — wTX||. Similarly if we use a ¢ output net and make the output for xp
the pth column of I, the delta rule will approximately minimize || - W X|| g,

192 S.W. ELLAacoTT

The norm here is the Schur matrix norm: this is simply the square root of
the sum of squares of all the elements. Thus the delta rule will attempt
to invert X and will do so exactly if X is nonsingular, since then a true
fixed point will exist (compare the remarks following (3.2)). Not only can
we avoid storing the whole matrix X at once, but we can compute the rows
of W individually as well.

Other networks and learning schemes have been proposed to perform var-
ious calculations concerned with least-squares approximation and principal
components. There are several of these around, with variations on the basic
ideas. We will look first at an example based on Baldi and Hornik (1989)
but we modify it somewhat. Consider a multilayer perceptron with n inputs
and n outputs. We have one hidden layer with m units. This network is il-
lustrated in Figure 3. However for this network the activation of the hidden
units (as well as the input and output units) is simply the identity function
o(x) = z. Thus if W is the matrix of weights in the first layer, and V is
the matrix of weights in the second layer, the output for input vector x is
simply VWx. Now for any given x we specify our target output y as y = x.
Obviously if we have m > n, then any V and W with VW = I would achieve
this exactly. But what happens for m < n? More specifically, let our input
patterns x;, j = 1,...,t, be the columns of an n X ¢t matrix X. We train the
network, perhaps by backpropagation, to minimize 3 [|x; — g(Xj)||§, where
the sum is over j and we recall that for any particular choice of V and W,
g(x) = VWx. Our minimization problem can be restated as follows: find V
and W so that || X — VW X||s is minimized. As we have seen, training with a
finite learning rate n will not in fact solve the least-squares problem exactly,
but let us suppose that 7 is sufficiently small that for practical purposes we
have the true minimum. (Since this is actually a linear problem there are
no local minima in this case.) For convenience, we will also assume that
the weight matrices are constrained so that V = W7 (this restriction is not
essential but it makes it easier to see what is going on). To understand what
the matrix W does here, we write X in terms of its SVD X = PSQT where
P and Q are orthogonal and S is diagonal (but not necessarily square). The
diagonal elements of S are the singular values 11 > vy > ... > v,. Suppose
rank(X) = r so that in fact v,41...v, = 0. The crucial stage is to find a
matrix H satisfying rank(H) < m and which minimizes || X — PHPT X||s.
Once we have H it is not difficult to factorize PHPT to get W and V. But
for any H, (since the Schur norm of a matrix is unchanged if we multiply
by an orthogonal matrix)

IX - PHPTX|%} = | -PHPT)X|}
(I - PHPT)PSQT 1%
= |(P-PH)S|%=I-H)S|}

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 193

T
= le?{(l - hii)2 + Zh?l}
i=1 Ji
Obviously, at the minimum H is diagonal. But we require rank(H) < m.
Thus the minimizing H is obtained by setting h; = 1, ¢ = 1,..., min(r,m)
and all the other elements to zero. If r < m, there is no loss of information
in this process, and the patterns xp are reconstructed exactly. If r > m,
then the total error over all patterns is given by the square root of

zrj V2. (4.1)

i=m-+1

It remains to perform the factorization VW = PHPT. While the choice of
H is unique, this is not so for the factorization. However, since PHPT is
symmetric, it makes sense to set V = W7 as suggested above. In fact we
have for the minimizing H,

HHT = H
whence
PHPT = PHHTPT = PH(PH)T.

PH has (at most) m nonzero columns: we may take these as V and make
W = VT = the first m rows of HTPT. Then VW = PHPT as required.
The rows of W are those eigenvectors of X X7 corresponding to the largest
singular values. The effect of W is to project the input patterns xp onto the
span of these vectors. If r < m (which is certainly the case, for instance, if
the number of patterns ¢ < m) then the ¢ n-vectors xp are compressed by
W onto m-vectors yp with no loss of information, since we can recover X as
WTY. Here, of course, the columns of Y are the yps. More usefully, even
if 7 > m there will be little loss in this compression provided the quantity
(4.1) is small.

Moreover, by definition, VW X is a best rank m approximation to X in
terms of the Schur norm, and can be constructed using the trained network
by feeding the columns of X through the network one at a time to get the
columns of VW X. It is well known and not hard to show that this matrix
is also a best rank m approximation with respect to the matrix 2 norm: the
proof is left for the reader!

A rather similar idea to that proposed in the last few paragraphs of Sec-
tion 3 is used by Almeida and Silva (1992). However they propose using
a separate perceptron to decorrelate the data. The weight matrix of this
perceptron is the filter 7' so that the output is simply Tx. The aim is to
find T such that TXXTTT = I (compare (3.18)). Starting with T = I,
they update T according to the rule

Tnt1 = (1+)T, — (T LT])T, (4.2)

194 S.W. ELrLacorT

where, as in Section 3, L = XX7T. Now if L has full rank, certainly there
exists a nonsingular 7™ such that
L7 =1. (4.3)
To see this write L = PDPT where P is orthogonal, and let
T* = D7'/?pT.
To see that it is a fixed point, simply set T* satisfying (4.3) as T}, in (4.2).
Almeida and Silva give as a sufficient condition for convergence
o < min{1, (3p(L) —1)7'}.
However, it is perhaps worth pointing out that convergence is sublinear, for
let
F(T)=Q1+a)T — TLTT)T (4.4)
and suppose T™* satisfies (4.3). Direct calculation yields for A € IR and any
n X n matrix S
F(T*+hS) = T*+(1+a)hS - oT*LT*ThS — (hRSLT*TT*
+hT*LSTT*) + O(h?)
= T*+ (14 a)hS — ahS — a(hS + hT*L5TT*) + O(h?)
since T* satisfies (4.3) and this condition also implies LT*TT* = I. Thus
F(T*+hS) = T*+(1-a)hS — ah(T*)718TT* + O(h?)
I+ (1 - a)hS(T*)™ — ah(T*T)1ST)T* + O(R?).
Now if we choose S so that (T*)~1S is antisymmetric we obtain
F(T*+hS) = (I+hS(T*)H)T* + O(h?)
= T*+4hS+ O(h?).

Thus we will not get linear convergence near the fixed point. This is
not a true learning network anyway since all the patterns are required at
once. Hence use of an optimization routine might be preferable. Or simply
compute the SVD instead! Almeida and Silva do give a version which uses
the patterns one at a time, but this requires a sequence of as tending to
zero. Thus it seems that a better update rule than (4.2) would be worth
seeking. In spite of these problems the particular interest of this method
is that Almeida and Silva have performed numerical experiments with net-
works interleaving ordinary backpropagation layers with layers trained by
(4.2). Improved convergence of the backpropagation was found on two test
problems.

We remark finally that another way to satisfy (4.3) is actually to compute

the principal components of X. Oja et al. (1992) describe a network to do
this.

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 195

4.2. Hopfield nets and graph optimization

The Hopfield net (see, e.g., Wasserman (1989, Ch. 6)) is a dynamic net
which is of historical importance as the first usable nonlinear neural network.
As such it was a significant factor in the revival of interest in connectionist
models in the 1980s. The most important application of Hopfield nets today
is in the field of graph theoretic optimization. We will first describe the
Hopfield architecture, and then use it to address the travelling salesman
problem.

Unlike the multilayer perceptron, the Hopfield net is not layered: all neu-
ronal units are treated equally. Each is connected to every other unit with a
bidirectional link. Thus, if the weight of the connection from unit z to unit
J is w;;, we have w;; = w;;. No connections are permitted from a unit to
itself, i.e. wy; = 0 (actually for neurons that can output only values 0 or 1,
this is not a real restriction: for example see the discussion of the travelling
salesman problem below). The topology of an n unit Hopfield net is thus the
complete digraph on n vertices. In addition to taking input from the other
nodes, each unit can also take a (constant) input. There are no output units
as such: the output from each unit is formed into a state vector x (so the
ith element of x is the output of the ith unit). Usually (and certainly for
our application) x is a binary vector, i.e. each element is either 0 or 1. Since
the connections of the network are recursive, it will evolve in time. In the
basic Hopfield model, single neurons are ‘fired’ (i.e. updated) at a time, in
random order (biologically plausible) or cyclically. (Sometimes later workers
have chosen, on grounds of simplicity and speed, to update all the units at
once in discrete time steps. As we shall see this does have disadvantages.)
Let us form the weights into a (symmetric) matrix W and let q be the vector
of inputs. At the kth time step we have a state vector x).. So at the k + 1st
time step, the input to the jth unit is the jth element of the vector Wxy +q.
The activation of the unit is by thresholding: let p; be the threshold on the
Jth unit and form these into a vector p. Thus, denoting the jth element of
a vector y by (y);, we fire the jth neuron by updating (x),1); as

1 if (Wxy +q—p); >0,
(Xk41)5 =19 0 if (Wxx+q-p); <0, (4.5)
(xk)j if (Wx+q-— p)j =0.

(Sometimes other choices are made in the equality case, but this one is
sensible: see below.) For single unit updating, we simply apply this rule for
one particular j and leave the other elements unchanged. If we are updating
all neurons at once, we apply it for all ;.

Associated with the network state vector x is an energy functional

E(x) = —%xTWx +q"x - pT'x, (4.6)

196 S.W. ELLACOTT

which serves as a Liapunov function. Observe that although this is usually
referred to as the energy, W is not positive definite. The condition w;; = 0
guarantees that trace(W) = 0, so W must have negative eigenvalues. This
applies equally to subspaces obtained by deleting rows and corresponding
columns of W. Thus, the good news is that the minimum of E must occur
not at a stationary point but at a vertex of the hypercube defined by the
condition 0 < (x); <1, j =1,...,n, ie. at a valid state vector x. (So we
can avoid the thresholding and use a continuous model instead, if we wish,
but we will stick to the threshold model here.) This result is a special case
of the Cohen—Grossberg Theorem, see e.g., Simpson (1990). The bad news
is that we can get local minima.

A simple calculation shows that the change éE = E(xy,1) — E(xy) in
the energy is given by

§E = —(Wxy +q—p)T (xkr1 — Xi) — (X1 — x10) T W(xpey1 — x). (4.7)

Now consider the inner product (Wxy + q — p)7(x41 — xi). Perhaps
(xk41 — Xk); = 0 for some j, in which case no contribution to the in-
ner product is made by the jth term. However, unless we have reached a
stationary point of the iteration, there must be one or more js for which
(xk+1 — Xk); # 0. We identify two cases. Possibly, (Wxg +q — p); > 0.
From (4.5) we must have (xy,1); = 1 whence necessarily (xk); = 0 and
(xk41 — Xk); = 1. The jth term thus contributes a positive value to the
inner product in this case. Conversely if (Wxy +q—p); <0, (xg41); =0,
(xx); = 1 and (xkx41 — Xx); = —1. Again a positive contribution is
made. Thus the first term of (4.7) constitutes a decrease in energy un-
less (xx4+1 — Xk); = 0. In this case, of course, we make no change in energy
but moving on to another neuron will stop us getting stuck. Since W is
not positive definite, we cannot guarantee that the second term in (4.4) is
negative. One reason for firing single neurons, rather than updating them
all at once, is that at most one element of (x) .y — Xy), say the jth, can
be nonzero. Then (xp,1 — Xk)T W(xg41 — Xx) = wj; = 0. Moreover by
updating singly we will ultimately search in all possible directions from a
given point until a reduction in energy is found, thus ensuring that a fixed
point is actually a local minimum of the energy. If we use global updating
we just have to hope that ||xk,1 —X|| is small and that the term is therefore
negligible. (Of course we could switch from global to single updating if the
former fails to give a decrease in energy.)

4.8. The travelling salesman problem

In optimization applications, Hopfield nets are not trained. Instead we set up
an energy functional corresponding to the function to be optimized, together
with penalty functions for any constraints, and ‘hard-wire’ the weight matrix

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 197

W so that this energy is actually (4.6). We then simply start the net off and
wait for it to reach a minimum. We illustrate this process by applying it to
the travelling salesman problem, an application first discussed by Hopfield
and Tank (see Wasserman (1989, Ch. 6) for this and other applications of
Hopfield nets.) Suppose we have m cities. We wish to visit each city precisely
once, returning to the starting point. Any such ordering of the cities is
known as a tour. The aim is to find the tour of minimum length. Since the
problem is NP complete, we will not expect to find the optimum solution
every time: we will be satisfied with a method that produces reasonably
good tours reliably. Let d;; denote the distance between the ¢th and jth
cities, so d;; = dj;. To set this problem up as a Hopfield net, we allocate
m neurons to each city. Thus the net will have n = m? neurons. (This
may seem excessive, but a large travelling salesman problem of say 100
cities will only require 10000 units: potentially well within the capabilities
of VLSI circuits when we remember that each unit is very simple.) Think
of the neurons being arranged in a table of m rows of m units, each row
corresponding to a city. Now a 1 in the jth neuron of any row means that
that city will be visited jth. Thus for a valid tour, there must be exactly
one 1 in each row. Since the cities are visited sequentially (we cannot be in
two places at once), there must also be exactly one 1 in each column. So
in total there will be m 1s in a valid tour table. To construct our energy
functional we introduce penalty functions for each of these constraints. Let
the state vector of the net be x, allocated by rows of the table so that the
first m elements refer to city 1, the second m elements refer to city 2 etc.
Recall that x may contain only 0s or 1s. Denote by e the vector containing
all 1s. We first introduce a term

2

(eTx —m)? = xT(eeT)x — 2mx + m?2.

This term will vanish if and only if x has exactly m 1s. The m? term
can be ignored since this is constant and we are constructing an energy
functional to minimize. The matrix ee”, all of whose entries are 1, presents
a difficulty, as it does not have zero diagonal. However, let A = ee? — I.
Then x7(ee)x = xT Ax + xTx. Moreover, since the entries of x can be

only 0 or 1, we have xTx = eTx. So we can use

xFAx + (1 - 2m)eTx. (4.8)

The other constraints are a little more complicated as we have to pick out
the sections of the state vector corresponding to individual cities. This
is conveniently achieved by introducing the following matrices. Let B be
defined as follows: b; = 0, ¢ = 1,...,n. Also b; = 0 if (x); and (x);
represent different cities or, in other words, if [i/m] # [j/m], where [r]
denote the greatest integer strictly less than r. Finally b;; = 1 if (x); and
(x); represent the same city or, in other words, if [i/m] = [j/m] but i # j.

198 S.W. ELLAacoTT

The matrix B is thus symmetric and block diagonal. Each block on the
diagonal corresponds to a particular city. The quadratic form

xTBx (4.9)

therefore has the following effect. Each block of B multiplies together and
sums distinct entries of x corresponding to the same city, which will be
greater than zero if two elements corresponding to the same city are nonzero.
Finally these sums are themselves summed over the cities. (Note: if this is
not clear, it helps to write out (4.9) for, say, m = 3.) Remembering that x
can contain only 1s and 0s. we see that (4.9) will achieve its minimum value
of 0 if each row of our unit table has at most one 1, i.e. if city is visited at
most once. Similarly we need to ensure that we do not try and visit two
cities at once, i.e. that each column of our table of units has at most one 1.
This is encoded by

xT Cx, (4.10)

where ¢;; = 0, ¢;;j; = 1 if 4 modulo m = 7 modulo m but 7 # j, ¢;; = 0
otherwise. Finally we need a term which actually reduces the length of
tours. Basically, this simply requires us to read off the tour order from
our table and add up the distances, but of course we need to write this
process as a symmetric quadratic form. For each city, we have a 1 in the
position of the table telling us when we visit it. The 1 in the previous column
tells us where we got there from. Since there can be at most one 1 in this
previous column, we may as well multiply the corresponding distance by the
element of x corresponding to that entry, multiply that by the element of x
corresponding to the current city, and sum. In order to preserve symimetry,
it is best to look in both the previous and next columns. This results in
each leg of the tour being included twice, but remember that we are not
actually going to calculate it. We are merely using it to get the weights for
our network. Of course, we also need to include the return to the starting
city. The quadratic form is thus

xT Fx, (4.11)

where we think of F' as being made up of m? m x m blocks. The p, gth block
corresponds to a trip from the pth city to the gth. Let F,, be this m x m
submatrix. Then F,, = 0. For p # ¢, each entry in Fy,, will be either d,q or
0. The nonzero elements will occur only if the trip from city p to city ¢ is
actually made. Thus we need to put d,, on the sub and super diagonals of
F,, . But we must also allow for the possibility that p is the first city and ¢
the last, or vice versa. Therefore we must also set (Fpg)im = (Fpq)m1 = dpq.
The other elements of F, are 0.

Now choose parameters a > 3,y > 6. Comparing (4.6) with (4.8)-(4.11)
we may set W = aA + BB +yC + 0F and ¢ = (1 — 2m)e’. The network

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 199

will first try to find a tour with n 1s, causing the (4.8) term to vanish. It
will then try to find a 1 in each row and column, eliminating the (4.9) and
(4.10) terms. Finally it will try to reduce the length of the tour. We need to
set the thresholds to (say) % In fact Hopfield and Tank used not this step
function activation, but (1 + tanh(x/ug) (Wasserman, 1989, p. 109) where
x is the total input to the unit and ug is a further parameter. The behaviour
is reportedly very dependent on the choice of parameters. Van den Bout and
Miller (1988) discuss this in detail and suggest improvements. A detailed
analysis of when the method will give a valid tour, and how bounds on the
optimal solution may be obtained, has been provided by Aiyer et al. (1989)
and in two papers, one by the same authors and the other by de Carvalho
and Barbosa in INNC 90 (1990, pp. 245-248 and pp. 249-253, respectively).
This proceedings also contains several other related papers in its section on
optimization (pp. 245-297).

5. Concluding remarks

Neural networks represent an important new tool for computation. Numer-
ical analysts can and have made significant contributions to the field. As
we have seen, the topic can stimulate new research in approximation theory
and optimization algorithms. Equally, we saw in Section 4 that methods
of neural computation can provide new tools for numerical computation.
In particular, it seems plausible that the Hopfield net could be applied to
processor assignment problems in parallel computation, particularly since,
by definition, suitable parallel hardware would be available to implement
it! There are other issues in neural net research which have hardly been
treated formally at all. For example, the claim is often made that networks
are fault tolerant in that deleting the connection to a unit, or even a whole
unit, degrades the performance only marginally rather than catastrophically
as it would with a conventional computing system. The argument for this is
that networks store information in a distributed way, so only a little infor-
mation will be lost. This is certainly the case if the network is constructed
as in Section 2.2, as deleting one of the terms from the quadrature formulae
will not destroy convergence. But networks are not constructed this way
in practice. Little serious analysis of fault tolerance has been attempted.
Applying numerical analysis to neural networks will not only be useful in
applications, but should provide a new stimulus to numerical analysis itself.

Acknowledgement

I would like to thank Professor W. Light, of the University of Leicester, for
some useful discussions on the material in Section 2.2.

200 S.W. ELLAacoTT

REFERENCES

I. Aleksander and H. Morton (1990), An Introduction to Neural Computing, Chap-
man and Hall (London).

L. B. Almeida and F. M. Silva (1992), ‘Adaptive decorrelation’, in Artificial Neural
Networks 2 (1. Aleksander and J. Taylor, eds), Vol. 2, North-Holland (Ams-
terdam) 149-156.

S. I. Amari (1990), ‘Mathematical foundations of neurocomputing’, Proc. IEEE 78,
1143-1463.

S. V. B. Aiyer, M. Niranjan and F. Fallside (1989), ‘A theoretical investigation into
the performance of the Hopfield model’, Tech. Report, CUED/F-INFENG/TR
36, Cambridge University Engineering Department, Cambridge, CB2 1PZ,
England.

P. Baldi and K. Hornik (1989), ‘Neural networks and principal component analysis:
learning from examples without local minima’, Neural Networks 2, 53—-58.

A. Ben-Israel and T. N. E. Greville (1974), Generalised Inverses, Theory and Ap-
plications, Wiley (Chichester).

M. Bichsel and P. Seitz (1989), ‘Minimum class entropy: a maximum information
approach to layered networks’, Neural Networks 2, 133-141.

R. W. Brause (1992), ‘The error bounded descriptional complexity of approxima-
tion networks’, Fachberiech Informatik, J W Goethe University, Frankfurt am
Main, Germany.

D. S. Broomhead and D. Lowe {1988), ‘Multivariable function interpolation and
adaptive networks’, Compler Systems 2, 321-355.

T. Chen, H. Chen and R. Liu (1991), ‘A constructive proof and extension of Cy-
benko’s approximation theorem’, in Computing Science and Statistics: Proc.
22nd Symp. on the Interface, Springer (Berlin) 163-168.

E. W. Cheney (1966), Introduction to Approrimation Theory, McGraw-Hill (New
York).

G. Cybenko (1989), ‘co approximation by superpositions of a sigmoidal function’,
Math. Control-Signals Systems 2, 303-314.

P. Diaconis and M. Shashahani (1984), ‘On nonlinear functions of linear combina-
tions’, STAM J. Sci. Statist. Comput. 5, 175-191.

S. W. Ellacott (1990), ‘An analysis of the delta rule’, Proc. Int. Neural Net Conf.,
Paris Kluwer (Deventer) 956-959.

S. W. Ellacott (1993a), ‘The numerical analysis approach’, in Mathematical Ap-
proaches to Neural Networks (J.G. Taylor, ed.), North Holland (Amsterdam)
103-138.

S. W. Ellacott (1993b), ‘Techniques for the mathematical analysis of neural net-
works’, J. Appl. Comput. Math. to appear.

S. W. Ellacott (1993c), ‘Singular values and neural network algorithms’, in Proc.
British Neural Network Society Meeting, February 1993.

K. Falconer (1990), Fractal Geometry, Wiley (New York).

M. Fombellida and J. Destiné (1992), ‘The extended quickprop’, in Artificial Neural
Networks 2 (I. Aleksander and J. Taylor), Vol. 2, North-Holland (Amsterdam)
973-977.

ASPECTS OF THE NUMERICAL ANALYSIS OF NEURAL NETWORKS 201

K.-I. Funahashi (1989), ‘On the approximate realization of continuous mappings
by neural networks’, Neural Networks 2, 183-192.

K. Hornik K, M. Stinchcombe and H. White (1989), ‘Multilayer feedforward net-
works are universal approximators’, Neural Networks 2, 359-366.

INNC 90 (1990), Proc. Int. Neural Network Conf. (9-13 July 1990, Palais de Con-
gres, Paris, France) Kluwer (Deventer).

E. Isaacson and H. B. Keller (1966), Analysis of Numerical Methods, Wiley (New
York).

D. Jacobs (ed.) (1977), The State of the Art in Numerical Analysis, Academic Press
(New York).

A. J. Jones (1992), ‘Neural computing applications to prediction and control’, De-
partment of Computing, Imperial College, London, United Kingdom.

E. Kreyszig (1978), Introductory Functional Analysis with Applications, Wiley (New
York).

B. Linggard and C. Nightingale (eds) (1992), Neural Networks for Images, Speech
and Natural Language, Chapman and Hall (London).

W. Light (1992), ‘Ridge function, sigmoidal functions and neural networks’, in
Approzimation Theory VII (E. W. Cheney, C. K. Chui and L. L. Schumaker,
eds) Academic (Boston) 1-44.

J. C. Mason and P. C. Parks (1992), ‘Selection of neural network structures —
some approximation theory guidelines’, Ch. 8, in Neural Networks for Control
and Systems, (K. Warwick, G. W. Irwin and K. J. Hunt, eds) IEE Control
Engineering Series no. 46, Peter Peregrinus (Letchworth).

H. N. Mhaskar and C. Micchelli (1992), ‘Approximation by superposition of sig-
moidal functions’, Adv. Appl. Math. 13, 350-373.

H. N. Mhaskar (1993), ‘Approximation properties of a multilayered feedforward
artificial neural network’, Adv. Comput. Math. 1, 61-80.

J. J. Moré (1978), ‘The Levenberg-Marquardt algorithm, implementation and
theory’, in Proc. Dundee Biennial Conf. on Numerical Analysis 1977, (G.
A. Watson, ed.), Springer Lecture Notes in Mathematics no. 630, Springer
(Berlin) 105-116.

E. Oja (1983), Subspace Methods of Pattern Recognition, Research Studies Press
(Letchworth, UK).

E. Oja (1992), ‘Principal components, minor components and linear neural net-
works’, Neural Networks 5, 927-935.

E. Oja, H. Ogawa and J. Wangviwattana (1992), ‘PCA in fully parallel neural
networks’, in Artificial Neural Networks 2 (I. Aleksander and J. Taylor, eds),
Vol. 2, North-Holland (Amsterdam) 199-202.

M. J. D. Powell (1992), ‘The theory of radial basis functions approximation in 1990,
in Advances in Numerical Analysis (W. Light, ed.), Vol. II, Oxford University
Press (Oxford), 105-210.

D. E. Rumelhart and J. L. McClelland (1986), Parallel and Distributed Processing:
Ezplorations in the Microstructure of Cognition, Vols 1 and 2, MIT (Cam-
bridge, MA).

H. Sagan (1969), Introduction to the Calculus of Variations, McGraw-Hill (New
York).

202 S.W. ELLACOTT

P. K. Simpson (1990), Artificial Neural Systems: Foundations, Paradigms, Appli-
cations and Implementations, Pergamon Press (New York).

E. Stein and G. Weiss (1971), Introduction to Fourier Analysis on Euclidean Spaces,
Princeton University Press (Princeton, USA).

J.G. Taylor (ed.) (1993), Mathematical Approaches to Neural Networks, North Hol-
land (Amsterdam).

D. E. Van den Bout and T. K. Miller (1988), ‘A travelling salesman objective
function that works’, Proc. IEEE Conf. on Neural Networks, Vol. 2, SOS
Printing (San Diego, CA) 299-304.

G. Venkataraman and G. Athithan G (1991), ‘Spin glass, the travelling salesman
problem, neural networks and all that’, Pramanae J. Phys. 36, 1-77.

Z. Wang, M. T. Tham and A. J. Morris (1992), ‘Multilayer feedforward neural
networks: a cannomnical form approximation of nonlinearity’, Department of
Chemical and Process Engineering, University of Newcastle upon Tyne, New-
castle upon Tyne, NE1 7TRU, United Kingdom.

K. Warwick, G. W. Irwin and K. J. Hunt (1992), ‘Neural networks for control and
systems’, IEE Control Engineering Series No. 46, Peter Peregrinus (Letch-
worth).

P. D. Wasserman (1989), Neural Computing: Theory and Practice, Van Nostrand
Reinhold (New York).

P. J. Werbos (1992), ‘Neurocontrol: where it is going and why it is crucial’, in
Artifictal Neural Networks 2 (I. Aleksander and J. Taylor, eds), Vol. 1, North-
Holland (Amsterdam) 61-68.

Y. Xu, W. A. Light and E. W. Cheney (1991), ‘Constructive methods of approxi-
mation by ridge functions and radial functions’. Address of first author: De-
partment of Mathematics, University of Arkansas at Little Rock, Little Rock,
AR 72204, USA.

